
WASHINGTON UNIVERSITY IN ST. LOUIS

Department of Physics

Dissertation Examination Committee:
James Buckley, Chair

Francesc Ferrer
Viktor Gruev

Henric Krawzcynski
Michael Ogilvie

A Study of the Effects of Pair Production and Axionlike Particle Oscillations on Very High

Energy Gamma Rays from the Crab Pulsar

by

Avery Michael Archer

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

August 2016
Saint Louis, Missouri



copyright by

Avery Michael Archer

2016



Contents

List of Tables v

List of Figures vi

Acknowledgments xvi

Abstract xix

1 Introduction 1
1.1 Gamma-Ray Astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Axions and Axionlike Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Pulsars and Radiative Emission/Absorption Mechanisms 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Multiwavelength Observations of Pulsars . . . . . . . . . . . . . . . . . . . . 9
2.3 Pulsar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Pulsar Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Pulsar Magnetosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Radiative Emission Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Curvature Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Inverse Compton Scattering . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 Pair Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Magnetosphere Gap Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Polar Cap Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Slot Gap Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Outer Gap Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Axions 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Theoretical Basis for Axions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Axions as Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Astrophysical Axion Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Constraints from Globular Clusters . . . . . . . . . . . . . . . . . . . 42

ii



3.4.2 Constraints from White Dwarf Cooling Times . . . . . . . . . . . . . 43
3.4.3 Constraints from SN 1987A . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Searches for Axions/ALPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Helioscope Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.2 Haloscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.3 Light Shining Through Wall Searches . . . . . . . . . . . . . . . . . . 49
3.5.4 AGN/Blazar Searches . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.5 Constraints from Neutron Stars . . . . . . . . . . . . . . . . . . . . . 55

4 VERITAS Instrument and Analysis Techniques 58
4.1 Imaging Atmospheric Cherenkov Technique . . . . . . . . . . . . . . . . . . . 58
4.2 Analysis Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Summary of Standard Data Analysis Methods . . . . . . . . . . . . . 62
4.2.2 Spectral Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Periodic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 VERITAS Analysis of Crab Pulsar Up to TeV Energies 72
5.1 VERITAS Data on the Crab . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 MAGIC Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Cut Selection for Pulsed Analysis . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Crab Pulsar Light Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Crab Pulsar Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Height of Pulsed Emission Site . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.8 Results Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Effect of Geometry and Pair Opacity on Light Curves 85
6.1 Simulation of Photon Propagation through Pulsar Magnetospheres . . . . . . 86

6.1.1 Pulsar Magnetosphere and Geometry . . . . . . . . . . . . . . . . . . 86
6.1.2 Photon Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Effects of Geometric Considerations on Simulated Light Curves . . . 94
6.2.2 Effect of Pair Creation on Simulated Light Curves . . . . . . . . . . . 95

7 Axion-like Particle Oscillations in Pulsar Magnetospheres 105
7.1 Pair-Opacity of Pulsar Magnetospheres . . . . . . . . . . . . . . . . . . . . . 106
7.2 Distance Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 ALP-Photon Mixing in Pulsar Magnetospheres . . . . . . . . . . . . . . . . . 112

7.3.1 Mixing without Pair Production . . . . . . . . . . . . . . . . . . . . . 112
7.3.2 Mixing with Pair Production . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.3 Monte Carlo Simulation of Photons . . . . . . . . . . . . . . . . . . . 123

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusion 130

iii



Appendix A List of Crab Data Run 133

Appendix B Monte Carlo Simulations of VHE Emission and Propagation
Results 135

Appendix C ALP-mixing Results 141

References 151

iv



List of Tables

5.1 VERITAS Data Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Crab Pulsar Differential Energy Spectrum . . . . . . . . . . . . . . . . . . . 81
5.3 Results of Spectral Fit to Power Law Function . . . . . . . . . . . . . . . . . 82

6.1 Pulsar Parameters Used in Simulations . . . . . . . . . . . . . . . . . . . . . 95

7.1 Results of Spectral Fit with Power Law Function . . . . . . . . . . . . . . . 124

A.1 Crab Pulsar Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.1 Results of Spectral Fit with Power Law Function (ξ = π/12) . . . . . . . . . 141
C.2 Results of Spectral Fit with Power Law Function (ξ = π/6) . . . . . . . . . . 143
C.3 Results of Spectral Fit with Power Law Function (ξ = π/4) . . . . . . . . . . 145
C.4 Results of Spectral Fit with Power Law Function (ξ = π/3) . . . . . . . . . . 147
C.5 Results of Spectral Fit with Power Law Function (ξ = 5π/12) . . . . . . . . 149

v



List of Figures

1.1 Catalog of known VHE sources created using TeVCat online TeV catalog:
http://tevcat2.uchicago.edu/. The top plot maps the known VHE emitters
in Galactic coordinates and is color-coded by source type. The middle plot
shows the number of known VHE sources over time. The bottom plot shows
the breakdown of the VHE catalog by source type. Pulsars (PSR) are the
main topic for this thesis and only comprise 1.1% of known sources with only
the Crab being detected above 100 GeV. . . . . . . . . . . . . . . . . . . . . 2

1.2 Composite image of optical and x-ray observations of the Crab Nebula. Image
taken from: http://hubblesite.org/newscenter/archive/releases/2002/24/image/a/ 4

2.1 Phase-averaged Vela spectral energy distribution. Fermi-LAT data are shown
with blue circles and EGRET data are shown with unfilled diamonds for
reference. The Fermi-LAT data are fit with a power-law with an exponential
cutoff, shown by the solid line. Figure taken from (Abdo et al., 2009) . . . . 11

2.2 Combined spectral energy distribution for Crab pulsar. VERITAS data are
given by red circles. Fermi-LAT data are given by green circles. The VERITAS
and Fermi-LAT data are fit with an power-law with an exponential cutoff,
shown with a dashed line, and a broken power-law, shown with a solid line.
χ2 values are shown below to illustrate the deviations from the Fermi-LAT and
VERITAS flux measurements. Figure taken from (VERITAS Collaboration
et al., 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The corotating magnetosphere described by Goldreich and Julian is shown.
Protons and electrons escape the magnetosphere streaming along open magnetic
field lines. The null-surface defines separation between regions where electrons
flow and protons flow. Figure adapted from (Goldreich and Julian, 1969). . . 17

2.4 Feynman diagrams for pair creation processes. (a) shows the Feyman diagram
for photon-photon pair creation. (b) shows Feyman diagram for pair creation
where a magnetic field acts as a virtual photon. . . . . . . . . . . . . . . . . 23

2.5 Illustration of the geometry of the various gap models in a pulsar magnetosphere
out to the light cylinder. The polar cap region is shaded in red. The slot gap
region is shaded in blue and includes the polar cap region. The outer gap
region is shaded in gray. The dotted line indicates the null charge surface,
where Ω ·B = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



2.6 Results from a two-pole caustic model simulation for a pulsar with inclination
angle ξ = 60◦. (A) shows the photon mapping as a function of the line of sight
angle ζobs and phase angle φ, as measured in the observer’s frame. Magnetic
polar caps are depicted as blank circles. Two caustics can be seen as dark
arches trailing the polar caps. Caustics form as a result of special relativistic
effects. A light curve can be produced by taking a horizontal cut of the
diagram for some constant observation angle, ζ, as depicted in (B)-(F). Each
figure (B)-(F) corresponds to a constant viewing angle depicted as dotted lines
in (A). Figure taken from (Dyks and Rudak, 2003). . . . . . . . . . . . . . . 30

2.7 Schematic of 3 possible charge-depleted gap regions in the outer gap model.
Gamma rays are produced by electrons accelerated by E‖, and thus are
beamed along field lines.‘ In regions (B) and (C) gamma rays emitted from
other regions can penetrate and pair-produce filling the region with charge
carriers and closing the gap region. Region (A), however, cannot be penetrated
by gamma rays emitted from other regions, e.g. (B) and (C), showing a stable
gap forms along the last closed field line. Figure taken from (Cheng et al.,
1986). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Phase-folded spectral energy distribution of the Crab pulsar for peaks P1 and
P2 from MAGIC (closed circles) and Fermi -LAT (open circles). Dashed line
shows power-law with exponential cut-off fit to Fermi -LAT data. Solid line
shows fit using a broken power-law to Fermi -LAT and MAGIC data. Figure
taken from (Ansoldi et al., 2016). . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Feynmann diagram for axion coupling to photons . . . . . . . . . . . . . . . 39
3.2 Summary of current constraints, future prospects and hints in axion/ALP

parameter space. The classical QCD axion parameter space is shown by a
yellow band. Axionic dark matter parameter space is shown by orange bands.
In the region labeled “WIMP-axion CDM” axions would only comprise a
fraction of the dark matter energy density. Prospects for IAXO and ADMX
are shown by hatched regions. Figure taken from Carosi et al. (2013). . . . . 45

3.3 Feynmann diagram for the Primakoff effect. . . . . . . . . . . . . . . . . . . 46
3.4 Exclusion limits on the axion/ALP coupling constant and mass from the

first two OSQAR data runs. The exclusion limits from ALPS is shown for
comparison in red. Figure taken from Pugnat et al. (2014). . . . . . . . . . . 50

3.5 Illustration of ALP oscillation scenarios near the source and in the intergalactic
magnetic field. Figure taken from Sánchez-Conde et al. (2009). . . . . . . . . 51

3.6 Left: Effect of ALP-photon oscillations inside source and in IGMF on the
spectrum of 3C 279 and PKS 2155-304 for two EBL models: Kneiske (dashed
line) and Primack (solid line). Expected photon flux without ALP mixing is
shown for comparison (dotted line for Kneiske model and dot-dashed line for
Primack model). Right: Boost in intensity of photon flux due to ALP mixing.
Figure taken from Sánchez-Conde et al. (2009). . . . . . . . . . . . . . . . . 53

vii



3.7 ALP parameter space with lower limits on the axion-photon coupling constant
found by studying 15 AGNs with various ground-based gamma-ray telescopes.
Several magnetic field scenarios are considered. Limits from each scenario are
in different shades of blue. Only the FRV EBL model results are shown.
Figure taken from Meyer et al. (2013). . . . . . . . . . . . . . . . . . . . . . 54

3.8 Left: Observed and expected 95% confidence limits on ALP mass and coupling
derived from 6 years of Fermi -LAT observations of NGC 1275. Expected limits
are from 400 Monte Carlo simulations. Right: Comparison of constraints from
Fermi -LAT to other constraints from other works. Figure taken from Ajello
et al. (2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Excluded regions of ALP parameter space (ma, fa) from a study of 5 years of
Fermi -LAT data for 4 neutron stars (labeled NS). Excluded parameter space
from studies of SN 1987A are labeled SN 1987A. Allowed parameters for the
classical Peccei-Quinn axion are shown with a black line. Figure taken from
(Berenji et al., 2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 The VERITAS array located at the Fred Lawrence Whipple Observatory near
Tucson, AZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Model of electromagnetic cascade induced by VHE gamma ray interaction in
the Earth’s atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Figures showing the shower geometry as an image in an IACT. (a) depicts
how a shower forms a projection in the IACT camera. (b) is a schematic of
a gamma ray shower imaged by 4 VERITAS telescopes and the geometry of
the images is used to reconstruct the shower direction. . . . . . . . . . . . . 61

5.1 Phase-folded spectral energy distribution of the Crab pulsar for peaks P1 and
P2 from MAGIC (closed circles) and Fermi -LAT (open circles). Dashed line
shows power-law with exponential cut-off fit to Fermi -LAT data. Solid line
shows fit using a broken power-law to Fermi -LAT and MAGIC data. Figure
taken from (Ansoldi et al., 2016). . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Phase-folded light curve, or phaseogram, of the Crab pulsar from MAGIC
observations in the energy ranges 100 < E < 400 GeV (top) and E > 400 GeV
(bottom). The region used for background subtraction is shaded gray. The
peak intervals are shown highlighted in yellow. Figure taken from (Ansoldi
et al., 2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Crab Nebula differential spectrum for 100 < E < 30000 GeV using the three
standard VERITAS source cuts. Soft-source cuts are shown in blue. Medium-
source cuts are shown in black. Hard -source cuts are shown in red. Each SED
is fit using a power-law function shown as a solid line. The pink dashed line
is the power-law function that was fit to HEGRA observations of the Crab
Nebula and is shown for comparison (Aharonian et al., 2004). . . . . . . . . 77

viii



5.4 VERITAS phaseogram of the Crab pulsar plotted over two phase intervals for
all energies observed. Two pulses can be seen at phases 0.0 and 0.4 and are
referred to as P1 and P2, respectively. The highlighted regions are the signal
regions used in the significance calculation for a pulsed signal. The signal
regions were defined based on the previous 2011 VERITAS analysis of the
Crab. The background region is indicated by black arrows. The red, dashed
line indicates the background level estimated from the background region. . 78

5.5 VERITAS integral phaseogram of Crab pulsar with an energy threshold of
E > 501 GeV. Signal region (highlighted) and background region (indicated
by arrows) are the same as Figure 5.4. The pulsed signal has a significance of
2.6σ as given by the Li & Ma formula. . . . . . . . . . . . . . . . . . . . . . 79

5.6 Growth of excess (left) and signifance (right) against cumulative photon events. 80
5.7 The phase-folded differential energy spectrum of the Crab pulsar for P1 and

P2 combined measured by VERITAS between 100 GeV and 500 GeV. The
Crab pulsar spectrum is well fit by a power law function (black line). The best-
fit parameters are given in Table 5.3. The power law fit to the 2011 VERITAS
observations is shown (dashed, blue) and the 2016 MAGIC observations are
shown for P1 (dot-dashed, red) and P2 (dashed, green) for comparison. . . . 81

5.8 Plot of the minimum emission height (i.e. minimum distance between the
Crab pulsar stellar surface and the emission location) of a VHE photon for
a given energy. The strong magnetic fields in the magnetosphere allow the
absorption of VHE photons due to pair creation. As a result of pair attenuation,
photons observed at various energies must have been emitted a minimum
distance above the stellar surface to survive propagation through the magnetosphere.
The exact location of emission cannot be known but a bound may be set on
the emission height. For the Crab pulsar, the spectrum is reconstructed up
to 500 GeV by the analysis in this chapter. This yields a minimum emission
height of 12 Rs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Schematic of the geometry used for pulsar simulations. The axis of rotation
Ω̂ lies along the z-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Outer gap region used for simulation shown in orange shaded region with the
boundaries of the light cylinder shown. Photons are given randomly seeded
initial positions throughout the OG region. . . . . . . . . . . . . . . . . . . . 90

6.3 Slot gap region used for simulation shown in orange shaded region with the
boundaries of the light cylinder shown. Photons are given randomly seeded
initial positions throughout the SG region. . . . . . . . . . . . . . . . . . . . 90

6.4 Example of the distributions of photon emission locations for one simulation
with ξ = π/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ix



6.5 (a) shows the light curves from one simulation with ξ = π/3 and ζ = π/4 for
both the SG model (black) and the OG model (blue). The top plot is the light
curve before any time of flight corrections are applied to the emission phase
φi. The bottom plot in (a) is the light curve for the same set of propagated
photons with phase-corrections φc applied. (b) is the distribution of values
for phase-corrections applied to the propagated photons. . . . . . . . . . . . 92

6.6 Distribution of photon energies used in simulations. Energies range from 100
GeV to 10 TeV. Photon energies are generated using a smoothly-broken power
law function and parameters that have been fit to Fermi-LAT and VERITAS
observations of the Crab Pulsar from VERITAS Collaboration et al. (2011). 93

6.7 Lightcurves from simulations for SG and OG models with inclination angle
ξ = 5π/12 and a range of viewing angles ζ. . . . . . . . . . . . . . . . . . . . 96

6.8 Lightcurves from simulations for SG and OG models with inclination angle
ξ = π/3 and a range of viewing angles ζ. . . . . . . . . . . . . . . . . . . . . 97

6.9 Plot of the mean free path of photons at various energies (100 GeV [black], 1
TeV [red] and 10 TeV [blue]) at any point from the stellar surface to the light
cylinder. The mean free path was calculated for a pulsar with inclination angle
ξ = π/4 and photons traveling along the +x̂-direction. The mean free path
changes as a function of distance from the pulsar due to the falling magnetic
field strength. The x, y values are given in units of pulsar radii (Rs). The
dashed gray line is the remaining distance to the light cylinder from a given
x−coordinate. Once the mean free path value exceeds the distance to the
light cylinder photons are expected to survive propagation. From this plot
the one can get an idea of the distance from the stellar surface that higher
energy photons must be emitted to be observed. . . . . . . . . . . . . . . . . 99

6.10 Schematic of the geometry used for calculation of pair production opacity. The
emission point (red point) is identified in the diagram. The photon momentum

vector ~k showing the direction of photon propagation is a dashed red arrow.
Initially ~k is tangential to the field line but as the the photon propagates the
angle βph between ~k and ~B increases. ~B is shown by a dashed gray arrow at
one point along the photon’s path. The line of sight to the observer is shown
by the solid black arrow. An angle cut is applied for the angle ϑ to determine
if a photon will be observed. The dipole magnetic field lines are shown as
solid black lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



6.11 Light curves from simulations for SG and OG models with inclination angle
ξ = 5π/12, a range of viewing angles ζ and an energy threshold E > 600
GeV. The light curves resulting only from geometric considerations with no
pair absorption are depicted in black for both SG and OG models. Some
photons that are capable of being observed due to geometry are not observed
due to pair attenuation in the strong magnetic fields of the magnetosphere.
The light curves showing the effect of pair attenuation on VHE gamma rays
are shown in blue. Light curves for some viewing angles, ζ, are more strongly
affected than others. For viewing angles of similar value to the magnetic
inclination angle the light curves are less affected as seen for both SG and OG
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.12 Light curves from simulations for SG and OG models with inclination angle
ξ = π/3, a range of viewing angles ζ and an energy threshold E > 600 GeV.
The light curves resulting only from geometric considerations with no pair
absorption are depicted in black for both SG and OG models. Some photons
that are capable of being observed due to geometry are not observed due to
pair attenuation in the strong magnetic fields of the magnetosphere. The light
curves showing the effect of pair attenuation on VHE gamma rays are shown
in blue. Light curves for some viewing angles, ζ, are more strongly affected
than others. For viewing angles of similar value to the magnetic inclination
angle the light curves are less affected as seen for both SG and OG models. . 102

6.13 Results of photon propagation with and without pair production. The distribution
of radial distances to the emission location of photons is shown in (a). The
energy distribution of simulated photons is shown in (b). The full distributions
of emitted photons is shown in black with gray shading. The blue distributions
shows “observed” photons. The red distribution shows photons that underwent
pair production during propagation. . . . . . . . . . . . . . . . . . . . . . . . 103

6.14 3D visualization of the emission locations of simulated photons in the magnetosphere
for SG (top) and OG (bottom) models where the inclination angle ξ = π/3.
“Observed” photons are shown in white and pair-attenuated photons are
depicted in red. The size of the points are weighted by the energy of the photon
emitted. The light cylinder is shown as a nearly transparent cylinder. The
pulsar is shown in black with an exaggerated size. The pulsar spin direction Ω̂
is along the z−axis. The line of sight to the observer is depicted by an arrow
(ζ = π/12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Plot of the fraction of simulated, emitted VHE photons that undergo pair
production while propagating through the pulsar magnetosphere for ξ = π/4
(top), ξ = π/4 (bottom) and the range of simulated ζ values over the range of
energies used. The plots demonstrate the range in effects of pair attenuation
on the propagation of photons. For ξ = π/4 most photons do not pair produce
until high energies are reached. For ξ = π/3 between 0 − 20% of photons in
the 600 GeV energy bin are attenuated (for ζ ≤ π/3) while at higher energies,
for some viewing angles, all photons are attenuated. . . . . . . . . . . . . . 107

xi



7.2 Plot of the fraction of simulated, emitted VHE photons that undergo pair
production while propagating through the pulsar magnetosphere for ξ = π/4
(top), ξ = π/4 (bottom) and the range of simulated ζ values over the range of
emission location radial distances. The plots demonstrate the range in effects
of pair attenuation on the propagation of photons. . . . . . . . . . . . . . . 108

7.3 The mean free path of a 100 GeV photon emitted at a distance 6Rs (in the
x̂−direction) above the stellar surface is shown for the full range of phase
values. The mean free path is calculated for several possible inclination angles
to illustrate the range of phase dependence for all simulated inclination angles.
The photons are assumed to propagate in the +x̂−direction. The distance to
the light cylinder Rlc is shown (red). Photons with mean free path values
less than this distance imply (gray region) the photons will be attenuated.
Photons with mean free path values greater than Rlc will be observed. . . . . 109

7.4 Comparison of relevant distance scales for pair-production and ALP oscillation
probability for a pulsar with ξ = π/4, ζ = π/2. The horizontal axis is the
emission location of photons in units of stellar radii (Rs) and goes from
the stellar surface out to the light cylinder radius. The vertical axis is the
distance scale for the two considered physical processes in units of stellar
radii (Rs). The mean free path for the range of energies considered (100 GeV
to 10 TeV) is bounded by blue lines and shaded. The distance scale that
maximizes ALP oscillation probability (d = π/ (Bg) for the relevant range of
coupling constant, g, (10−11 to 10−7) is bounded by black lines and hashed.
The distance from the radial position to the light cylinder Rlc is shown in
red to indicate what distance scales are of interest for pulsar magnetospheres.
From this figure it can be seen that there is a range of photon energies and
coupling constants for which the distance scale relevant to pair production
and ALP oscillation probability are comparable. This range lies naturally in
the VHE regime for photon energies. . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Feynman diagrams of the Primakoff effect (a) and the inverse Primakoff effect
(b). Axions and ALPs are coupled to photons and in the presence of an
external magnetic field, an ALP may convert into a photon. This interaction
is key for many searches for ALPs including the work presented in this chapter.113

7.6 Probability of photon-ALP oscillation at locations through a pulsar magnetosphere
calculated using Equation 7.6 where ma = 10−4 eV, d = L. Paγ is shown for
Eγ = 100 GeV (top), Eγ = 1 TeV (center) and Eγ = 10 TeV (bottom) and
various values of g. The x−axis gives the emission location of the considered
photon, d is measured from this distance. Not all values of g are shown
for each energy due to the rapid oscillations of the function that obscure the
graph. For each considered energy, smaller values of g give lower frequencies of
oscillation for the probability function. For any values of g, Eγ the probability
of oscillation never exceeds 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 115

xii



7.7 ALP parameter space relevant to pulsar magnetospheres where we fix Ecrit =
10 GeV to allow for strong mixing to occur in the VHE regime. The effective
axion mass is limited, in part, by the particle density, nGJ , in the magnetosphere.
The coupling constant range is limited to values where ALP-photon oscillation
distance scales are comparable to the pair-attenuation mean free path of VHE
photons (as seen in Figure 7.4). The left and right edges of the parameter
space are determined by the magnitude of the magnetic field at the stellar
surface (right) and the light cylinder (left). . . . . . . . . . . . . . . . . . . 116

7.8 Probability of photon-ALP oscillation at locations through a pulsar magnetosphere
calculated using Equation 7.16 where ma = 10−4 eV and d is the distance to
the light cylinder from the initial position. Paγ is shown for Eγ = 100 GeV
(top), Eγ = 1 TeV (bottom) with various values of g. The x−axis gives the
emission location of the considered photon, d is measured from this distance.
Both graphs show that the probability of oscillation is negligible until beyond
10Rs. In general lower energy photons have a larger probability of oscillation
for the parameters considered. The suppression of the ALP-photon oscillations
near the stellar surface is due to inclusion of the vacuum polarization term,
∆QED, and the oscillation probability becomes nonnegligible once the other
terms are of the same order of magnitude as ∆QED. Including ∆QED inside of
the pair producing region is clearly not rigorously correct, but is shown here
to bound the possible effects of vacuum polarization. . . . . . . . . . . . . . 121

7.9 Probability of photon-ALP oscillation (top) and probability of photon survival
(bottom) at locations through a pulsar magnetosphere calculated using Equation
7.15 with ∆QED set to zero where ma = 10−4 eV, Eγ = 1 TeV d is the
distance to the light cylinder from the initial position. The x−axis gives the
emission location of the considered photon. The graph of Paγ shows that
the probability of oscillation negligible until beyond 5Rs. The suppression of
ALP-photon oscillations near the stellar surface is due to the strength of the
pair absorption term in this region. ALP-photon oscillations are limited to a
narrow region of the magnetosphere. . . . . . . . . . . . . . . . . . . . . . . 122

7.10 Results of simulations of photon emission and propagation in a pulsar magnetosphere
with inclination angle ξ = π/3 and various viewing angles. Light curves are
shown (left) for the observed photons with considerations for geometry only
(black), geometry and pair attenuation (red) and geometry, pair attenuation
and ALP-photon mixing (blue). For many viewing angles variations in light
curves are negligible. More pronounced effects are seen for ζ = π/12 and
ζ = π/2. Differential spectra are shown (right) for the observed photons
with consideration for geometry only (black), geometry and pair attenuation
(red) and geometry, pair attenuation and ALP-photon mixing (blue). Each
distribution is fit with a power law function (solid line) and 95% confidence
bands (dotted line) are shown. The best-fit spectral indices for each viewing
angle are shown in Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiii



7.11 Results of simulations of photon emission and propagation in a pulsar magnetosphere
with inclination angle ξ = π/3 and ζ = π/12. The light curve is shown (above)
for the observed photons with considerations for geometry only (black), geometry
and pair attenuation (red) and geometry, pair attenuation and ALP-photon
mixing (blue). The differential spectrum is shown (bottom) for the observed
photons with consideration for geometry only (black), geometry and pair
attenuation (red) and geometry, pair attenuation and ALP-photon mixing
(blue). Each distribution is fit with a power law function (solid line) and 95%
confidence bands (dotted line) are shown. The best-fit spectral indices are
shown in Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.1 Light curves from simulations for SG and OG models with inclination angle
ξ = π/12 and a range of viewing angles ζ. The light curves with only resulting
only from geometric considerations are depicted in black for both SG and OG
models. Some photons that are capable of being observed due to geometry
are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on
VHE gamma rays are shown in blue. Some the light curves for some viewing
angles, ζ, are more strongly affected than others. For viewing angles of similar
value to the magnetic inclination angle the light curves are less affected as seen
for both SG and OG models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2 Light curves from simulations for SG and OG models with inclination angle
ξ = π/6 and a range of viewing angles ζ. The light curves with only resulting
only from geometric considerations are depicted in black for both SG and OG
models. Some photons that are capable of being observed due to geometry
are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on
VHE gamma rays are shown in blue. Some the light curves for some viewing
angles, ζ, are more strongly affected than others. For viewing angles of similar
value to the magnetic inclination angle the light curves are less affected as seen
for both SG and OG models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.3 Light curves from simulations for SG and OG models with inclination angle
ξ = π/4 and a range of viewing angles ζ. The light curves with only resulting
only from geometric considerations are depicted in black for both SG and OG
models. Some photons that are capable of being observed due to geometry
are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on
VHE gamma rays are shown in blue. Some the light curves for some viewing
angles, ζ, are more strongly affected than others. For viewing angles of similar
value to the magnetic inclination angle the light curves are less affected as seen
for both SG and OG models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xiv



B.4 Light curves from simulations for SG and OG models with inclination angle
ξ = π/3 and a range of viewing angles ζ. The light curves with only resulting
only from geometric considerations are depicted in black for both SG and OG
models. Some photons that are capable of being observed due to geometry
are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on
VHE gamma rays are shown in blue. Some the light curves for some viewing
angles, ζ, are more strongly affected than others. For viewing angles of similar
value to the magnetic inclination angle the light curves are less affected as seen
for both SG and OG models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.5 Light curves from simulations for SG and OG models with inclination angle
ξ = 5π/12 and a range of viewing angles ζ. The light curves with only resulting
only from geometric considerations are depicted in black for both SG and OG
models. Some photons that are capable of being observed due to geometry
are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on
VHE gamma rays are shown in blue. Some the light curves for some viewing
angles, ζ, are more strongly affected than others. For viewing angles of similar
value to the magnetic inclination angle the light curves are less affected as seen
for both SG and OG models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xv



Acknowledgments

I owe a great sum of gratitude to a number of people for all of the support and guidance

that has been given to me in course of writing this dissertation. I have been blessed by

having such a wonderful support system. I would certainly like to thank everyone but I

might double the size of this dissertation in doing so and still not express ample gratitude

to all those that have encouraged my throughout my academic career thus far.

First, I must thank my wonderful wife, Christine Archer. She has been everything to me in

the last five years. She has been incredibly patient as she listened to me talk through various

physics problems, despite her field of studying being far removed from physics. She has been

a source of encouragement any time that I needed an optimism and motivation. She has

been the captain of our ship when I was too busy and for that I will always be thankful.

Second, I need to thank my advisor, Jim Buckley. Jim has been the best mentor a student

could ask for. Your insight, support, patience and humor have made graduate school a great

experience. You have always been supportive of my long term goals, even if that meant me

spending time on work away from research. I am grateful for the confidence you have had

in me to allow me to have near free reign over outreach activities at WUSTL. Working with

you and Dan in the lab has been a wholly worthwhile experience.

xvi



I owe many thanks to Dan Leopold, who unfortunately passed away in December 2015. Dan

was a second unofficial mentor to me over the years. I had the good fortune to work side by

side with Dan in the lab and his experience was incredibly helpful as I learned the ins and

outs of the lab. He is certainly missed and I am grateful I had the opportunity to work with

and learn from him.

Thank you to the members of my mentoring committee, Francesc Ferrer and Henric Krawzcynski.

Your feedback and insight over the last several years has proved invaluable. Also, many

thanks to Mike Ogilivie and Viktor Gruev for being a part of my dissertation committee and

providing useful comments on my dissertation. Thanks to Shmuel Nussinov for the discussion

of the validity of the main topic of this dissertation your comments and encouragement were

very helpful.

I would like to thank my VERITAS collaborators for the combined efforts to keep such a

great instrument running. Thanks to those that I have had the pleasure of sharing the long

nights of observing shifts with. Good company makes the nights go by quickly.

I would like to thank all of the friends that I made over the years in St. Louis. Many thanks

to all of my WUSTL friends who I have commiserated with through classes, qualifying

exams and research woes. Ryan, Tom, Tony, Matt, Nathan, Wenlei, Nick, Nara, Kelsey,

Brendan, Gus, Joben, and so many others, you all made my time at WUSTL an unforgettable

experience. To all my non-WUSTL friends, thank you for helping to find a place in St. Louis

and discover what a wonderful city St. Louis truly is.

xvii



Last, but certainly not least, I need to thank all of my family. My mom and dad are largely

responsible for me entering graduate school. They have always encouraged me to push myself

and not shy away from a challenge. My brother, Josh, and sister, Abby, have been incredibly

patient with my lack of consistent communication while in graduate school. Despite regularly

poking fun at each other, I am confident that I have the best siblings. You guys are the

best. Thanks to the Walker family for keeping Christine sane while I have been more or less

absent. Particular thanks to my octo-buddy Katherine.

I could not have done this without the love and support from all those mentioned and so

many more. Thank you all.

Avery Michael Archer

Washington University in Saint Louis

August 2016

xviii



ABSTRACT OF THE DISSERTATION

A Study of the Effects of Pair Production and Axionlike Particle Oscillations on Very High

Energy Gamma Rays from the Crab Pulsar

by

Avery Michael Archer

Doctor of Philosophy in Physics

Washington University in St. Louis

Professor James Buckley, Chair

Pulsars are highly-magnetized rapidly-rotating neutron stars that emit energy throughout

the electromagnetic spectrum. Despite decades of study, the emission mechanisms of pulsars

are not well understood. New observations at the highest energy end of the spectrum can

provide strong constraints on theoretical models of pulsar emission. The strong magnetic

fields of pulsar magnetospheres accelerate charged particles to relativistic energies and these

particles emit very high energy (VHE; E > 100 GeV) gamma rays. In addition to creating

conditions to emit gamma rays, the magnetic fields are powerful enough to attenuate gamma

rays through pair production. The attenuation of gamma rays limits the photon energies that

may escape the magnetosphere, unless an additional physical process decreases the opacity of

the magnetosphere to these photons. The interaction of axions or axionlike particles (ALPs)

with magnetic fields is one such process.

Some extensions of the Standard Model suggest the existence of axions, which are light

pseudoscalar bosons with a two-photon coupling. As a result of this coupling photon-ALP

oscillations can occur in the strong fields of a pulsar magnetosphere. For typical parameters
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of pulsar magnetospheres, VHE photons fall within the strong mixing-regime for oscillations

when the axion mass is 10−3 eV < ma < 10 eV and the axion-photon coupling constant

is 10−11 < gaγ < 10−6. Axion-photon oscillations within the inner magnetosphere would

decrease its opacity as axions would propagate unimpeded by pair attenuation.

In this dissertation, the VHE photon emission and propagation from pulsars is studied in

detail. New observations and analysis of the Crab pulsar from the VERITAS experiment are

presented which extend the Crab spectrum to higher energies. The magnetospheres of pulsars

are simulated using a retarded vacuum dipole solution for the magnetic field. VHE photon

emission and propagation is studied using a Monte Carlo method. The emission regions

are defined using the slot gap and outer gap models. The effects of pair production and

axion-photon mixing are considered and light curves and spectra are produced to illustrate

the influence of both processes on the observations of pulsars. For some geometries, VHE

photons are heavily attenuated by pair production. Axion-photon mixing is shown to reduce

the opacity of pulsar magnetospheres allowing a larger fraction of VHE photons to survive

propagation. However, we find that the inclusion of QED effects on the effective photon

mass limit the conversion probability over much of the region where strong pair attenuation

is expected.
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Chapter 1

Introduction

1.1 Gamma-Ray Astronomy

Gamma-ray astronomy is the study of celestial objects at the most energetic end of the

electromagnetic spectrum. While the field of astronomy is one of the oldest natural sciences,

gamma-ray astronomy is one of the youngest forms of astronomy. The relative youth of

the field is due almost entirely to the opacity of the Earth’s atmosphere to gamma rays.

Gamma-ray astronomy did not become possible until the 1960s when satellite experiments

provided our first look at the gamma-ray sky.

The study of very high energy (VHE; E ≥ 100 GeV) gamma rays from the ground

arguably began with the first detection of VHE gamma rays from the Crab Nebula by the

Whipple Observatory in 1987. These observations were made possible by a technique of

imaging the atmospheric air showers with multiple PMT pixels to distinguish these from

cosmic-ray induced hadronic showers. The Crab Nebula now serves as a standard candle for

the field of VHE astronomy. The number of known VHE sources has increased greatly since

the first detection of the Crab, now with over 150 detected VHE emitters (see Figure 1.1).

Gamma-ray astronomy plays a unique role in understanding non-thermal radiative processes.

Such processes occur in the most extreme environments in the universe where particles are
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Figure 1.1: Catalog of known VHE sources created using TeVCat online TeV catalog:
http://tevcat2.uchicago.edu/. The top plot maps the known VHE emitters in Galactic
coordinates and is color-coded by source type. The middle plot shows the number of known
VHE sources over time. The bottom plot shows the breakdown of the VHE catalog by source
type. Pulsars (PSR) are the main topic for this thesis and only comprise 1.1% of known
sources with only the Crab being detected above 100 GeV.
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accelerated to relativistic energies. Gamma-ray astronomy provides a unique and powerful

tool for probing relativistic processes in astrophysics in a variety of environments. The

gamma-ray catalog has a number of galactic and extra-galactic sources from a variety of

sources including supernova remnants, pulsar wind nebulae, active galaxies and x-ray binaries

as shown in Figure 1.1. This work will focus on a galactic source class with currently only

one source in the VHE catalog, pulsars.

There are currently three major ground-based imaging atmospheric Cherenkov telescopes

(IACTs) in operation. The High Energy Stereoscopic System (H.E.S.S.) is an array of five

telescopes located in Namibia and went into operation in 2002 with only four telescopes, a

larger fifth telescope was added in 2012. The Major Atmospheric Gamma Imaging Cherenkov

(MAGIC) system is a pair of 17 meter telescopes located in La Palma. MAGIC began

observations in 2004 with one telescope and the second was added in 2009. The Very

Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12

meter telescopes located near Tucson, AZ. VERITAS began full array observations in 2007

and had a major camera system upgrade in 2012. Observations made by VERITAS of the

Crab pulsar (see Figure 1.2) between 2007 and 2015 are one major topic discussed in this

work.

1.2 Pulsars

Pulsars are highly-magnetized rapidly rotating neutron stars. Pulsars are compact

objects with characteristic masses of 1.4 M� and characteristic radii of 10 km. These peculiar

objects were first discovered in serendipitous fashion in 1967 and the known pulsar catalog

now contains over 1800 objects. Pulsars’ defining observational characteristic is the high-

frequency periodic or pulsed emission observed across the electromagnetic spectrum. A
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Figure 1.2: Composite image of optical and x-ray observations of the Crab Nebula. Image
taken from: http://hubblesite.org/newscenter/archive/releases/2002/24/image/a/

pulsar results from a magnetized neutron strar, typically with its magnetic poles misaligned

with respect to the rotation axis. Such magnetized neutron stars are surrounded by powerful,

corotating, dipole-like magnetic fields as well as strong electric fields capable of accelerating

particles to very high energies. The name pulsar comes from an early idea that they were

pulsating stars. Pulsars do not actually pulse to radiate, but rather their periodic signal

comes from a beam of electromagnetic radiation sweeps across the observers line of sight

as the star rotates. Pulsars are often referred to as “cosmic lighthouses” because of the

similarity between the beam of radiation of a pulsar and the light emanating from a light

house.

Though there are nearly 2000 known pulsars, the number of gamma-ray emitters is

drastically smaller with 117 gamma-ray pulsars in The Second Fermi Large Area Telescope

Catalog of Gamma-Ray Pulsars (Abdo et al., 2013). The VHE pulsar catalog is smaller still

with only one known VHE emitter, the Crab pulsar. Due to the interactions between VHE

photons and the strong magnetic fields of pulsars, gamma-ray observations of pulsars provide
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a unique probe into the structure of the pulsar magnetosphere and the emission mechanisms

at work in these extreme astrophysical environments. VHE observations can place constraints

on the emission locations and help shape theoretical models of pulsar magnetopsheres. In

addition to providing insight in to pulsars themselves, VHE observations of pulsars can serve

as a tool to investigate fundamental physics. The magnetic fields of pulsars (reaching 1012

Gauss) are far more powerful than any laboratory-based experiment could achieve and the

propagation of VHE photons through such fields allows for an extreme environment to be

used as an astrophysical laboratory to investigate effects of quantum electrodynamics not

easily produced in a terrestrial lab. Moreover, these unique systems may even provide a

window into physics beyond the Standard Model.

1.3 Axions and Axionlike Particles

A solution (the Peccei-Quinn (PQ) mechanism) to the strong CP problem in QCD

results in the prediction of a pseudo-Nambu Goldstone boson resulting from the new CP

symmetry (Weinberg, 1978; Wilczek, 1978). This particle known as an axion, obtains a

mass at the QCD phase transition in the early universe. Axions couple to photons, allowing

axion-photon oscillations to occur, amongst other processes. These oscillations require the

presence of an external magnetic field. Since they may be born nonrelativistic, such axions

provide a good candidate for cold dark matter. One can envision a broader class of axion-like

particles (ALPs) that couple to electrogamnetism like the axion (with the ALP coupling to

two photons) that may solve the strong CP problem, or contribute to dark matter

The axion is a theoretical particle that arises from a solution to the strong CP problem

in quantum chromodynamics (QCD) first postulated by Roberto Peccei and Helen Quinn

in 1977. The strong CP problem is a well-known and unresolved issue with the Standard
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Model. QCD does not break charge parity symmetry and there is no known reason for CP-

symmetry to be conserved, creating a “fine-tuning” problem. The proposed solution known

as the Peccei-Quinn mechanism introduces a new global symmetry that can be spontaneously

broken, which results in a new particle, the axion, as demonstrated by Frank Wilczek and

Steven Weinberg. The QCD axion has a direct relation between its mass and the energy

scale at which the Peccei-Quinn symmetry is violated. A more general class of particle,

referred to as axion-like particles (ALPs), are not restricted to such a direct relationship

and are assumed to only couple to photons. ALPs also serve as a solution to the strong CP

problem.

The coupling of ALPs to photons allows for ALP-photon oscillations to occur, amongst

other processes. These oscillations require the presence of an external magnetic field. Oscillations

occur in weak fields over large distances or they can occur over shorter distances in the

presence of powerful magnetic fields. The oscillation of photons between an ALP state

and a photon state would affect well-known and studied physical processes, in particular,

astrophysical processes. Studies have been conducted on a number of different astrophysical

sources which would be affected by the existence of axions or ALPs. Several studies have

been conducted investigating the effects of ALP-photon oscillations on the VHE spectra of

distant blazars. In this dissertation we present a new method of probing ALP parameter

space by investigating ALP-photon oscillations that may occur as VHE photons propagate

through the powerful magnetic fields of pulsar magnetospheres.

1.4 Dissertation Overview

This dissertation is organized into three primary sections. The first section (Chapters

2 and 3) reviews the background physics of pulsars and axion-like particles necessary for
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understanding and performing the analysis presented in later chapters. The second section

(Chapters 4 and 5) of the dissertation describes the VERITAS experiment and analysis

techniques, then discusses: observations of the Crab pulsar from 2007-2015, analysis performed

on this data and the results of that analysis. The third section (Chapters 6 and 7) describes

Monte Carlo simulations of VHE emission and propagation of VHE photons through a pulsar

magnetosphere with currently understood physics (Chapter 6). The effect of including ALP-

photon oscillations in the propagation simulations is described in Chapter 7. The final

chapter discusses conclusions reached by the analysis and simulations performed and future

work to be pursued.
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Chapter 2

Pulsars and Radiative

Emission/Absorption Mechanisms

2.1 Introduction

James Chadwick famously discovered the neutron in 1932 by scattering alpha particles

off of beryllium atoms. Only a few years later in 1934, Walter Baade and Fritz Zwicky

proposed the existence of stars comprised primarily of these newfound particles stating:

“With all reserve we advance the view that a supernova represents the transition

of an ordinary star into a new form of star, the neutron star, which would be the

end point of stellar evolution. Such a star may possess a very small radius and

an extremely high density” (Baade and Zwicky, 1934).

The first evidence of the existence of neutron stars came in 1967 with the discovery of pulsars.

Pulsars were first discovered in serendipitous fashion by Anthony Hewish and Jocelyn Bell

on November 28, 1967 using a radio telescope designed to search for distant quasars (Hewish

et al., 1968). The short-timescale periodicity of the signal was unprecedented and did not

have an immediate, known natural explanation. As a result of the peculiar nature of the
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signal the object was initially nicknamed LGM-1, for Little Green Men, implying a sentient

extraterrestrial being was responsible for the signal. After a similar signal was detected

from elsewhere in the sky, the notion of alien contact was eliminated since it was highly

unlikely that intelligent lifeforms would contact humans at the same time using the same

method. This first pulsar discovered took on the more formal name CP 1919 and has since

been designated the name PSR 1919+21. We know now that pulsars are rapidly-rotating

highly-magnetized neutron stars. Since this initial discovery at radio wavelengths pulsars

have been found to emit radiation throughout the electromagnetic spectrum up to, and

including, gamma ray wavelengths. As of 2016 there are more than 2500 known pulsars1

(Manchester et al., 2005). This chapter will briefly discuss the history of observations of

pulsars, the basic known properties of pulsars, the radiative emission mechansims relevant

to pulsar physics, different theoretical models used to explain observed high energy emission

and finally discussing these models in the context of recent observations of the Crab Pulsar.

2.2 Multiwavelength Observations of Pulsars

Since the initial discovery in 1967, pulsars have been studied in great detail across

the electromagnetic spectrum. Within one year’s time 21 more pulsars had been discovered,

including the well-known Crab pulsar (Comella et al., 1969) and the Vela pulsar (Large et al.,

1968). The following decades have been filled with detailed studies adding new insight into

these objects and adding more known pulsars to the catalog. This thesis is mainly concerned

with the highest energy end of the spectrum covering observations from 10 GeV to 1 TeV.

The first gamma-ray observations of pulsars came in the 1970s from NASA’s Small

Astronomy Satellite 2 (SAS-2) launched in 1972 and the European Space Research Organisation’s

Cos-B satellite launched by NASA in 1975. These two missions were able to detect pulsed

1http://www.atnf.csiro.au/research/pulsar/psrcat/
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gamma-ray emission from the Crab pulsar and the Vela pulsar (Bennett et al., 1977);

(Thompson et al., 1975). SAS-2 was the first to detect gamma-ray emission from Geminga,

a source that could not be associated with other known objects at the time (Fichtel et al.,

1975) and was only later confirmed to be a pulsar by x-ray observations. The gamma-

ray pulsar catalog was further expanded with observations from the Energetic Gamma Ray

Experiment Telescope (EGRET) telescope aboard the Compton Gamma-Ray Observatory

(CGRO), one of NASA’s “Great Observatories“ satellites, launched in 1991. By 1999 the

EGRET catalog included five pulsars (Hartman et al., 1999) and by the end of the satellite’s

mission in 2001 EGRET identified a total of 7 gamma-ray pulsars and several more likely

sources. With these observations EGRET discovered pulsed emission as high as 30 GeV

(Thompson, 2008). In 2008 the Gamma-ray Large Area Space Telescope (GLAST), now

known as the Fermi Gamma-ray Space Telescope (Fermi), was launched by NASA. Within

6 months of the launch date, Fermi had detected an additional 39 new gamma-ray emitting

pulsars, bringing the total known gamma-ray pulsars to 46 (Abdo et al., 2010b). By 2011

Fermi increased that number to 101. Currently Fermi has detected a total of 2052 pulsars.

These observations of many gamma-ray emitting pulsars, some with observed emission

as high as 10 GeV, have had a large impact on the theoretical understanding of where

the broadband radiation is being emitted within the pulsar magnetosphere. In particular

the Fermi observations of energies above a few GeV disfavor one model for the pulsed

nonthermal, the polar cap model. The polar cap model requires emission to occur within

altitudes (radial distances from the stellar surface) of 1 − 2 stellar radii. With energies of

a few GeV, photons would have to occur at altitudes higher than 2 stellar radii, due to

the strong attenuation from B + γ → e+e− absorption in the strong magnetic field of the

star(Abdo et al., 2010a). Other models such as the slot-gap or outer-gap models allow for

high altitude emission and are therefore favored by the Fermi results. The spectral energy

2https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-
Ray+Pulsars
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Figure 2.1: Phase-averaged Vela spectral energy distribution. Fermi-LAT data are shown
with blue circles and EGRET data are shown with unfilled diamonds for reference. The
Fermi-LAT data are fit with a power-law with an exponential cutoff, shown by the solid line.
Figure taken from (Abdo et al., 2009)

distributions (SEDs) of the pulsed emission also provide constraints on the emission models.

The SED for the Vela pulsar is shown in Fig 2.1. The spectra of the Fermi pulsars in the

gamma-ray band exhibit an exponential cutoff that bolsters the curvature radiation scenario

incorporated in the gap models, see Section 2.5, furthering support for such emission models

(Romani, 1996). Until 2011 these seemed to be the favored description of radiative emission

from pulsars.

In 2011 VERITAS reported a detection of pulsed gamma rays coming from the Crab

pulsar at energies above 100 GeV, the first detection of pulsed emission at such energies. The

combined spectral energy distribution from Fermi -LAT and VERITAS, shown in Fig 2.2,

over the energy range of 100 MeV to several hundred GeV favors a broken power law of the

form A×(E/E0)α/
[
1 + (E/E0)α−β

]
(VERITAS Collaboration et al., 2011). The exponential

cut-off expected by the curvature radiation scenario is disfavored. Curvature radiation alone
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Figure 2.2: Combined spectral energy distribution for Crab pulsar. VERITAS data are
given by red circles. Fermi-LAT data are given by green circles. The VERITAS and Fermi-
LAT data are fit with an power-law with an exponential cutoff, shown with a dashed line,
and a broken power-law, shown with a solid line. χ2 values are shown below to illustrate
the deviations from the Fermi-LAT and VERITAS flux measurements. Figure taken from
(VERITAS Collaboration et al., 2011)

cannot adequately explain the & 100 GeV emission. An additional or alternative mechanism

is necessary to explain the spectral shape seen in the Crab pulsar.

2.3 Pulsar Properties

Pulsars are highly-magnetized rapidly-rotating neutron stars. Pulsars are the compact

remnant left after the catastrophic gravitational collapse and supernova explosion of massive

(M > 8M�) main sequence stars. These objects are identifiable by their distinct short

timescale periodic signals. Pulsars have been observed with pulse periods ranging from

milliseconds to a few seconds. These stellar remnants can be divided into three categories:

rotation-powered pulsars, accretion-powered pulsars and magnetars. The first category are

characterized by rotational energy losses powering the emission. The second category are
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characterized by powering emission through the gravitational potential energy of accreted

matter from a companion object. The third category are characterized by powering emission

through the decay of the extremely powerful magnetic field of the star. This thesis will

concentrate on the description and characteristics of rotation-powered pulsars.

2.3.1 Pulsar Energetics

The canonical neutron star has a mass of 1.4M�, a radius of 10 km and a magnetic

field strength at the stellar surface of 1012 G. The magnetic field of a pulsar takes the form of

a rapidly rotating dipole with the magnetic axis of the star typically misaligned with respect

to the rotation axis. The magnetic flux density at the surface of the star then takes the

dipole form:

~B =
m

r3

[
2 cos θr̂ + sin θθ̂

]
(2.1)

The rotational energy of a pulsar is given by the angular velocity, Ω, and the moment

of inertia, I in the form

Erot =
1

2
IΩ2 where Ω = 2π/P, I = MR2 (2.2)

giving Erot =
2π2MR2

P 2
(2.3)

For the Crab pulsar which has a period P = 0.033 s, the rotational energy is

Erot =
2π2 · 1.4M� · 102 km2

(0.033 s)2 = 2.5× 1042 J (2.4)

Pulsar spin-rates decrease very slowly over large timescales with a period derivative,

dP/dt, generally greater than zero. The rate of energy loss can be determined given a pulsar’s
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spin period, P , and the time derivative of the period, dP/dt = Ṗ .

dErot
dt

=
d

dt

2π2MR2

P 2
= 2π2MR2 d

dt

1

P 2
= −4π2MR2 Ṗ

P 3
(2.5)

The age of a pulsar, τ , can also be estimated from a few basic parameters and assuming

the magnetic field strength does not change significantly over time. To see this we begin

with the formula for radiation from a rotating magnetic dipole:

dE

dt
=

2

3

m̈2
⊥
c3

(2.6)

where m⊥ is the component of the magnetic dipole perpendicular to the rotation axis. For

an inclined dipole rotating with some angular velocity, Ω:

m̈⊥ = Ω2m (2.7)

which gives

dE

dt
=

2

3

Ω4m2
⊥

c3
(2.8)

a pulsar is approximately a uniformly magnetized sphere with radius, R, magnetic field

strength at the stellar surface, Bs, one can write the magnetic dipole moment in terms of

this surface field:

m = BsR
3 and m⊥ = BsR

3 sin θ (2.9)

and for an inclined magnetic dipole with angular velocity Ω:

m = m0e
−iΩt

=⇒ m̈ = Ω2m0e
−iΩt = Ω2m

(2.10)
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combining Equations 2.9 and 2.10 and substituting into Eq. 2.5 gives

dE

dt
=

2

3

(
2π

P

)4
R6 (Bs sin θ)2

c3
(2.11)

combining the previous formula with the rotational energy loss formula Eq. 2.5 to find:

PṖ =
8π

3

R4 (Bs sin θ)2

Mc3
(2.12)

thus PṖ is a constant that depends on the mass, radius, magnetic field strength and

misalignment angle. The characteristic age can be determined by integrating:

∫ P

P0

PdP = PṖ

∫ τ

0

dt (2.13)

τ =
P

2Ṗ
(2.14)

It can also be shown from the previous relation for PṖ that the surface strength of the

magnetic field is approximately:

Bs ≈
√

3

8π

Mc3

R6
PṖ ≈ 2.12× 1015

√
PṖ G (2.15)

which for values of the Crab pulsar, P = 0.033 s and Ṗ ≈ 10−12.4 s−1, gives Bs ≈ 2× 1012 G.

2.3.2 Pulsar Magnetosphere

In a well-known paper published in Peter Goldreich and William H. Julian (Goldreich

and Julian, 1969) argued that the region surrounding pulsars, the pulsar magnetosphere,

cannot exist as a vacuum. Goldreich and Julian argued that a strong electric field exists at

the stellar surface as a result of the stellar matter being an excellent electrical conductor. In
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the stationary frame of the spinning star the interior electric field ~E ′ must vanish so in the

lab frame that field would take a form that satisfies the condition:

~E ′ = ~E +
~v × ~B

c
= ~E +

~Ω× ~r
c
× ~B = 0 (2.16)

It is easy to show that the Coulomb force of such a field on a charged particle would be

strong enough to overcome the gravitational pull of the star and strip the charged particles

from the stellar surface into the magnetosphere resulting in a charged, conducting plasma

surrounding the star. Up to a point, this plasma corotates with the star but has an outer

boundary past which corotation would require velocities greater than the speed of light and is

therefore no longer physically viable. This outer boundary is known as the light cylinder and

is defined by a radius of rlc = c/Ω and bounded above and below by the planes z = ±c/Ω.

Magnetic field lines contained within the light cylinder boundary are closed while magnetic

field lines that pass through the light cylinder boundary are open. While particles moving

perpendicular to the field lines rapidly gyrate (and radiate), the charged particles in this

plasma move relatively freely along the magnetic field lines thus making these lines act as

essentially equipotential lines. In the stationary frame a Lorentz transformation of the dipole

field results in an electric field

~E =
ΩBsR

5
s

cr4

(
1

2

(
3 cos2 θ − 1

)
r̂ − cos θ sin θθ̂

)
(2.17)

where φ is the azimuthal unit vector and Bs is the field strength at the magnetic pole.

Substituting into Gauss’ law one obtains the space-charge density of the corotating plasma,

commonly referred to as the Goldreich-Julian density, given by:

ρGJ =
∇ · ~E

4π
=
−~Ω · ~B

2πc

1[
1− (Ωr/c)2 sin2 θ

] (2.18)
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Figure 2.3: The corotating magnetosphere described by Goldreich and Julian is shown.
Protons and electrons escape the magnetosphere streaming along open magnetic field lines.
The null-surface defines separation between regions where electrons flow and protons flow.
Figure adapted from (Goldreich and Julian, 1969).

This expression only applies to the plasma bounded by the light cylinder. Charged particles

of the plasma stream along open field lines and escape the magnetosphere. Protons and

electrons escape the magnetosphere in roughly equal number so that the star suffers no

net charge loss. Protons will travel and escape the magnetosphere along magnetic field

lines which are at higher electrostatic potentials than the surrounding interstellar gas, while

electrons will follow field lines at electrostatic potentials lower than the surrounding interstellar

gas. Figure 2.3 illustrates the structure of the pulsar magnetosphere as described by Goldreich

and Julian. The null surface, defined by ~Ω · ~B, is the surface separates the electron lines

from the proton lines and divides the magnetosphere into separate charge regions (Goldreich

and Julian, 1969). The model presented by Goldreich and Julian is the primary basis used

for subsequent explanations of various pulsar radiative emission mechanisms which will be

discussed in the following section.
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2.4 Radiative Emission Mechanisms

The current understanding of the precise physical mechanisms at work in a pulsar

magnetosphere is best summed up by Werner Becker of the Max-Planck Institut, “The theory

of how pulsars emit their radiation is still in its infancy” (Schartel). Despite nearly 50 years of

observations the mechanisms behind pulsar radiation are still not entirely agreed upon. The

radiative emission of pulsars is generally divided into two categories, coherent and incoherent

emission. The radio regime is typically narrow-band and has a high luminosity both of which

are indicative of coherent emission. The high-energy regime is very broad-band and much

more indicative of synchrotron, curvature radiation and inverse Compton scattering. This

section will focus on outlining some of the basic mechanisms likely responsible for the high-

energy emission from pulsars.

2.4.1 Synchrotron Radiation

A charged particle traveling through a magnetic field will be accelerated in the direction

perpendicular to the particle’s velocity and perpendicular to the magnetic field line. As a

result of the acceleration the charged particles emit radiation as they gyrate about the field

line. For non-relativistic velocities this radiation is known as cyclotron radiation and for a

particle with charge e and mass m this radiation is emitted at the Larmor- or gyro- frequency:

νL =
eB

mc

When the charged particles are significantly relativistic, the gyrofrequency is modified by

a time dilation factor giving the relativistic gyrofrequency, νr = νg/γ. In addition to this

time dilation effect on the gyrofrequency, the geometric features of radiation are affected

by special relativity. At high Lorentz factors, relativistic beaming of the radiation plays an
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important role. The radiation is beamed forward in the direction of motion of the charged

particle. This has the effect of producing an emission cone with a pitch angle, a, which is

determined by the velocity of the particle:

α ≈ 1

γ

This results in a narrow (temporal) pulse whose Fourier decomposition yields spectral

components at harmonics at the relativistic gyrofrequency. At sufficiently high velocities

the emission of each of the harmonics is broadened due to special relativistic effects and

the radiation observed is a continuous spectrum rather than a single frequency or series

of discrete harmonics. This continuous spectrum exhibits an exponential cut-off above a

frequency known as the critical angular frequency :

ωc =
3cγ3

2a

where γ is the Lorentz factor of the charged particle and a is the radius of curvature of

the charged particle’s spiral orbit. Folding this with the electron energy spectrum gives the

spectrum of the resulting synchrotron radiation.

The average energy loss rate for these particles can be found by starting with the

relativistic Larmor formula for power radiated by an accelerating charge:

−
(
dE

dt

)
=

2

3

e2

c3
γ4a2 (2.19)

where a = eβ sinαB/ (γme). Averaging over all pitch angles α, to determine the average

energy loss rate, and rewriting in terms of the Thomson cross section, σT = 8πr2
e/3, and the
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classical electron radius, re = e2/ (mec
2), gives:

−
(
dE

dt

)
=

4

3
σT c

B2

8π

(v
c

)2

γ2 (2.20)

The salient features of this equation are: the energy loss rate (1) is proportional to

the magnetic energy density, (2) is proportional to the Lorentz factor squared, and (3) is

inversely proportional to the square of the particle’s rest mass

2.4.2 Curvature Radiation

Pulsars have extremely strong magnetic fields and thus charged particles gyrating about

the field lines rapidly lose the velocity component perpendicular to the field lines due to

synchrotron losses resulting in the particles streaming along the field lines. However, since

the magnetic field lines of the pulsar are curved due to the dipolar shape of the field, as

charged particles stream along these curved field lines they emit curvature radiation. The

formalism for curvature radiation follows that for synchrotron radiation, with the radius, a

of the spiral orbit of the charged particle being replaced by the radius of curvature, ρc of the

magnetic field line. In section 2.5 we will discuss the possibility of a parallel component of

the electric field existing in regions of low charge density. Such electric fields can accelerate

particles along the field lines. The cut-off energy for curvature radiation of electrons whose

acceleration is balanced by radiative losses is given by:

Ec = 0.64πλ̄

(
E‖
e

)3/4

ρ1/2
c (2.21)

where λ̄ ≡ ~/mec is the electron Compton wavelength and E‖ is the electric field that

accelerates the electrons parallel to the magnetic field (Zheleznyakov, 1996). Above this

cutoff energy, Ec, the spectrum falls off exponentially. For an acceleration region in the
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outer gap of a pulsar magnetosphere the parallel component of the electric field takes the

form E‖ ∼ eBlc/ (reλ̄χ
2B~), where, by convention, we scale the magnetic field at the light

cylinder Blc = Bs (Rs/Rlc)
3 by the critical field for pair creation B~ ≡ m2

ec
3/ (e~). χ is a

scaling parameter such that the scaled radius of curvature ρχ = ρc/(χRlc). Using the formula

for E‖, setting P = 0.1P−1 and since Rlc = Pc/(2π) one can rewrite Eq. 2.21 for a pulsar

magnetosphere as:

Ec ≈
8ρ

1/2
χ

χ

(
ε‖B12

)3/4
(P−1)−7/4 (GeV) (2.22)

where ε‖ is an electrostatic decrement factor ε‖ ≤ 1 and B12 = B0/1012 Gauss (Baring, 2011).

Curvature radiation within a pulsar magnetosphere is predicted to have a cut-off

energy on the order of a few GeV, which is consistent with the measured values from

Fermi -LAT detected pulsars (Abdo et al., 2010a), but an unlikely explanation for the

VERITAS observations of pulsed emission above 100 GeV from the Crab pulsar (VERITAS

Collaboration et al., 2011).

2.4.3 Inverse Compton Scattering

In the classical Compton scattering process an incoming high energy photon collides

with an electron and transfers some of its energy and momentum to the electron. The

scattered photon has a lower energy and momentum than the initial photon while the

scattered electron has gained the lost energy and momentum. Inverse Compton scattering

occurs when ultra-relativistic electrons collide with a low-energy photon. The photon gains

energy from the electron. For the case where γ~ω � mec
2, the Thomson scattering cross-

section, σT , can be used to describe the scattering. (This constraint defines a low energy

regime called the Thomson regime.)
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The energy gained by low photons by scattering in the Thomson regime is given by:

dE

dt
=

4

3
σT curad

(
v2

c2

)
γ2 (2.23)

where urad is the energy density of radiation in the laboratory frame (Longair, 2011). The

number of photons scatter per unit time is given by σT curad/ (~ω), using this with Eq. 2.23

gives the average energy of scattered photons

Ēγ =
4

3
Eγ0

(v
c

)2

γ2 (2.24)

Equation 2.24 shows that photons upscattered by the inverse Compton process is proportional

to γ2 in the Thomson regime, this is important in high energy astrophysics since this process

allows low energy ambient or synchrotron photons to be upscattered to gamma-ray energies.

Energy conservation limits the maximum energy of the inverse Compton photon to . γmec
2.

It should be noted that Eq. 2.23 is valid for only in the limit γ~ω � mec
2. Many of these

types of interactions in astrophysical conditions happen in the extreme relativistic regime,

also known as the Klein-Nishina regime. The full expression for inverse Compton scattering

uses a cross section that includes proper relativistic corrections called the Klein-Nishina

formula:

σKN = σT
3

4

[
1 + x

x3

{
2x (1 + x)

1 + 2x
− ln (1 + 2x)

}
+

1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

]
(2.25)

where x ≡ ~ω/mec
2. This cross section reduces to the Thomson cross section in the limit

x� 1. In the Klein-Nishina regime the cross section decreases with increasing photon energy

making collisions less likely. In the ultra-relativistic limit γ � 1, the Klein-Nishina cross

section simplifies to: σKN = (3/8)σTx
−1 (ln 2x+ 1/2).

22



Figure 2.4: Feynman diagrams for pair creation processes. (a) shows the Feyman diagram for
photon-photon pair creation. (b) shows Feyman diagram for pair creation where a magnetic
field acts as a virtual photon.

2.4.4 Pair Production

If a photon has energy of at least 2mec
2, it is possible for the photon to interact with

a second photon to produce an electron-positron pair. A single photon cannot pair produce

since energy and momentum can not be simultaneously conserved, But one can think of the

Coulomb field of an atom on a magnetic field as providing off-shell, virtual photons allowing

conservation of momentum and pair production by single gamma rays in the presence of a

field. The process of pair creation can lead to the substantial attenuation of gamma rays

in certain astrophysical scenarios, such as the extra-galactic background light attenuation

of TeV gamma rays from distant blazars as disucssed in Chapter 3. The Feynman diagram

for standard photon-photon pair creation is shown in Fig. 2.4(a). In some considerations of

pulsar physics the interaction of two high-energy photons can be important as discussed in

the sections on pulsar gap models.

For a photon propagating through a magnetic field, the field appears as a virtual photon

allowing for pair creation to occur. This magnetic pair production becomes significant for

gamma rays above Eγ = 2mec
2 and in magnetic fields with strengths comparable to the
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quantum critical field B~ = m2
ec

3/e~ ≈ 4.4×1013 G. Pair creation cannot occur in a vacuum

due to the requirement of four-momentum conservation; however, an external magnetic field

can absorb photon momentum perpendicular to the field, while energy and momentum along

the field is still conserved. Because of the absorption of momentum perpendicular to ~B the

pair creation threshold takes a slightly different form which can easily be found by considering

the conservation of energy and longitudinal momentum and gives the relation:

sin2 βp =
k2 sin2 βph − 4

k2 − 4
(2.26)

where ~k is the photon momentum vector defined to be dimensionless with respect to λ̄ (i.e.

k′ = kλ̄). βp is the angle between the magnetic field and the momentum vector ~pe± of the

produced particle. From this it can be seen that the threshold for pair creation depends on

the orthogonal component of the photon momentum:

k⊥0 = (k sin βph)0 = 2 (2.27)

The probability, per unit time, of producing an electron-positron pair by a photon with

momentum ~k moving in a magnetic field ~B is given by the expression:

W
(
~k
)

=
33/2

29/2

α~c

λ̄
b0| sin βph| exp

(
− 8

3kb0| sin βph|

)
Θ [k| sin βph| − k⊥0] (2.28)

where α~ is the fine-structure constant, b0 = B/B~, Θ(x) is a step-function and k⊥0 is the

minimal value of the photon momentum component orthogonal to ~B for pair production to

be possible.

From the equation for W it is clear that the likelihood of pair production scales with

the perpendicular component of the magnetic field, with respect to the path of the photon.
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The mean free path, l, can be found to be:

l =
8ρc
3kb0

[
ln

α~ρc

2
√

6λ̄k2b0

− 3 ln

[
1

2
ln

[
α~ρc

2
√

6λ̄k2b0

]]]
(2.29)

(Beskin et al., 1993). This pair attenuation makes some altitudes of the pulsar magnetosphere

opaque to high energy photons, depending on the exact energy of a given photon. A limit

can be placed on how near the stellar surface a detected photon may originate to avoid to

pair attenuation. For a polar cap model the restriction placed on the location of emission is:

r ≥
(

EcB12

1.76 GeV

)2/7

P−1/7106 cm (2.30)

where B12 is the magnetic field in units of 1012 G.

2.5 Magnetosphere Gap Models

Following the description outlined by Goldreich and Julian (Goldreich and Julian,

1969) the charge density that builds up in the pulsar magnetosphere is such that charges

are able to rearrange themselves and short out the electric field component parallel to the

magnetic field, except in a few limited regions. The two general locations of these regions

where ~E · ~B 6= 0 are the region just above the polar cap and the region along the null surface

boundary, where ~Ω · ~B = 0. In these areas there can exist a nonzero E‖ that would accelerate

charged particles allowing radiative emission, but this is a necessary not sufficient condition.

It has been exceedingly challenging to pinpoint the gap from first principles and typically

one postulates plausible locations for the gap and then turns to experimental constraints to

either support or contradict these ansatz.
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2.5.1 Polar Cap Models

Polar cap (PC) models, in general, propose that high-energy emission from pulsars

originates from charged particles being accelerated by a nonzero E‖ which forms near the

magnetic poles in a region that is called the polar cap. The first versions of PC models

to explain pulsar emission date back the work of Sturrock (Sturrock, 1971) and Ruderman

and Sutherland (Ruderman and Sutherland, 1975). Much work has gone into updating and

providing ever greater detail to these first models but the bulk of the basic principles remain

the same.

PC models fall into two categories: vacuum gap models and space charge-limited flow

models. Binding forces act on charged particles in the surface layer of a pulsar due to

the lattice structure of the particles in a strong magnetic field. These charged particles

are considered free (ignoring gravitational considerations discussed in Sec. 2.3.2 only if the

surface temperature of the pulsar is above the thermal emission temperature for electrons Te

and ions Ti. If the surface temperature of the neutron star, T , exceeds the thermal emission

temperature, Te,i, free emission of charged particles will occur and the flow of particles is

only limited by the space-charge. Such PC models are known as space charge-limited flow

(SCLF) models. Alternatively if T is less than the thermal emission temperature, Te,i, then

charges are trapped in the surface of the neutron star and a vacuum gap will form at the

surface creating a region in which particles can be accelerated, such models are referred to

as vacuum gap models.

Sturrock first defines the polar cap region in his SCLF model in 1971. Any field line

that extends as far as the light cylinder, r cos θ = Rlc must be an open field line. Any field

lines within a radius θp as measured from the magnetic pole will be open field lines. This

26



region is defined as the polar cap. The angular radius of the polar cap is given by:

θp ≈
√
R/Rlc = 10−4.8R1/2T−1/2

and the radius of this cap is

Rp ≈ Rθp = 10−4.8R3/2T−1/2.

It is along these open field lines that charged particles stream outward (Sturrock, 1971).

Fig 2.5 shows the geometry of the polar cap region. In the Ruderman and Sutherland PC

model, the space charge along these open field lines just above the stellar surface is less

than the Goldreich-Julian corotating charge density due to the outflow of charged particles,

while surface charges are trapped as previously described. With the deficit of charge in

relation to the Goldreich-Julian charge density, a nonzero E‖ forms which will accelerate

charged particles. The accelerating particles can radiate via curvature radiation or in some

models they may scatter via the inverse Compton process with thermal X-rays. Through

either radiative mechanism the produced photons will undergo pair production in the pulsars

strong magnetic field. As the charged particles produced stream outward they also gyrate

around B-field lines and emit coherent synchrotron radiation. The secondary photons travel

to higher altitudes and eventually pair produce and this continues creating a cascade. Such

a mechanism predicts a sharp cutoff at hard gamma-ray energies due to pair attenuation off

of the strong B-field at lower altitudes (Baring, 2011). In addition to difficulty in describing

the VHE gamma-ray emission PC models also have difficulty in reproducing the pulse profile;

PC models rely on relatively low altitude emission and, as a result, the predicted beam size

is too small to produce some observed wider pulse profiles.

27



Figure 2.5: Illustration of the geometry of the various gap models in a pulsar magnetosphere
out to the light cylinder. The polar cap region is shaded in red. The slot gap region is
shaded in blue and includes the polar cap region. The outer gap region is shaded in gray.
The dotted line indicates the null charge surface, where Ω ·B = 0.

2.5.2 Slot Gap Models

Jonathon Arons first proposed the physical possibility of an acceleration/emission

region at high-altitudes within pulsar magnetospheres (Arons, 1983). This acceleration

region known as the slot gap (SG), comes as a consequence that the pair plasma, from

PC models, above the pair formation front occurs at higher altitudes close to the edge of the

polar flux tube, i.e. the surface described by the last open field lines (Arons and Scharlemann,

1979). This is allowed by the lower strength electric field near the edge of the PC boundary.

With a lower strength electric field, particles must be accelerated greater distances before

reaching sufficient Lorentz factors to radiate photons capable of pair production. The pair
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plasma that forms is responsible for screening the accelerating electric field. Since this pair

plasma does not occur for higher and higher altitudes (relative to the stellar surface) as the

last open field line is approached, the gap region is, accordingly, extended as a thinning layer

bounded by the last open field line. Near this last open field line and at high altitude nearly

all gamma rays radiated can escape. This thin layer can extend out to the light cylinder of

the magnetosphere as shown in Figure 2.5. The width of the slot gap is a function of pulse

period and surface magnetic field given by Λ = PB
−4/7
s12 where B12 is given in units of 1012

G (Muslimov and Harding, 2003).

The charged particles that accelerate in the slot gap will radiate via curvature, inverse

Compton, and synchrotron processes at high altitudes. The Lorentz factors of these particles

will ultimately be limited to γ ≈ 107 when the cooling rate of curvature radiation is equal to

the acceleration rate in the electric field. This peak energy of curvature radiation spectrum

has been calculated to be approximately 30 GeV for typical pulsar parameters (Harding,

2007). It is also likely that inverse Compton scattering of the charged particles off low energy

radio photons in the slot gap will occur. The IC spectrum would extend to a maximum energy

of a few GeV (Harding, 2007).

The geometry of the slot gap becomes strongly influenced by special relativistic effects

at high altitude. Aberration, time-of-flight and time retardation of the magnetic field play

an important role in the emission signature. Aberration is taken into account by Lorentz

transforming the unit vector of the photon propagation direction k̂′ from the corotating

frame to the inertial observer (unprimed) frame:

k̂ =
k̂′ +

[
γ + (γ − 1)

(
β · k̂′

)
/β2
]
β

γ
(

1 + β · k̂′
) (2.31)
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Figure 2.6: Results from a two-pole caustic model simulation for a pulsar with inclination
angle ξ = 60◦. (A) shows the photon mapping as a function of the line of sight angle ζobs
and phase angle φ, as measured in the observer’s frame. Magnetic polar caps are depicted
as blank circles. Two caustics can be seen as dark arches trailing the polar caps. Caustics
form as a result of special relativistic effects. A light curve can be produced by taking a
horizontal cut of the diagram for some constant observation angle, ζ, as depicted in (B)-(F).
Each figure (B)-(F) corresponds to a constant viewing angle depicted as dotted lines in (A).
Figure taken from (Dyks and Rudak, 2003).

30



where β is the local corotation velocity in natural units. The effect of time-of-flight considerations

can be seen as a shift in the observed phase of δφ = −~r · k̂/Rlc, where k̂ is the unit vector

corresponding to the photon propagation direction in the observer’s frame. The effects of

special relativity also cause photons emitted at different altitudes to bunch together in phase

creating caustics as depicted in Fig. 2.6. These caustics naturally create double-peaked light

curves seen in gamma-ray pulsars as demonstrated in Fig. 2.6. Single-peaked curves can be

reproduced at small viewing angles (Dyks and Rudak, 2003).

2.5.3 Outer Gap Models

In addition to gap regions that originate at or near the polar cap of the pulsar, another

category of emission models was proposed in 1986 that exists in the outer region of the

magnetosphere. These models are referred to as outer-gap (OG) models. The OG model

was first presented by Cheng, Ho, and Ruderman who postulated the existence of a charge

depletion region that would form with boundaries beginning on the outside of the last closed

field line and bounded on the other side by a charge layer on a surface of an open field line.

The innermost boundary of the region is the null surface, ~Ω · ~B = 0 and the region extends

to the light cylinder (Cheng et al., 1986). This region is depicted in Fig 2.5 and Fig. 2.7.

At the null surface, the net Goldreich-Julian charge is zero, but there can still be

a non-negligible but neutral density of charged particles. A gap can form near the null

surface. Electrons streaming outward along the open field lines passing through this surface

will escape through the light cylinder leaving behind a negative charge-depleted region,

relative to the corotating charge density, ρGJ . If left unimpeded, this outward flow of

negatively-charged particles would allow the gap region to continue to grow, depleting the

outer magnetosphere of charge. The depletion of charge gives rise to a nonzero electric field,

E‖. The associated potential which accelerates charges is roughly that expected by Faraday’s
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Figure 2.7: Schematic of 3 possible charge-depleted gap regions in the outer gap model.
Gamma rays are produced by electrons accelerated by E‖, and thus are beamed along field
lines.‘ In regions (B) and (C) gamma rays emitted from other regions can penetrate and
pair-produce filling the region with charge carriers and closing the gap region. Region (A),
however, cannot be penetrated by gamma rays emitted from other regions, e.g. (B) and (C),
showing a stable gap forms along the last closed field line. Figure taken from (Cheng et al.,
1986).

law or Eq. 2.17 ∆V ≈ Ω2BsR
3/c2. As charged particles are accelerated in this newly formed

charge-depletion region, they may emit gamma-ray photons via curvature radiation, inverse

Compton scattering and synchrotron radiation. Some of these gamma-ray photons will pair-

produce within the gap region. The newly formed electron-positron pairs will limit the

growth of the gap to a thin slab along the last closed field line.

The strength of this accelerating potential in the gap can reach 1015 V depending on

the rotation speed of the pulsar, the length of accelerating gap, the radius of curvature of

the magnetic field lines, the ratio between the width and breath of the gap and the magnetic

flux though the gap region. The electric field generated has been shown to become strong

enough to accelerate charged particles to Lorentz factors which allow curvature radiation

gamma rays to be emitted. As stated in Section 2.5.2 the maximum Lorentz factor possible
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is reached when the energy gain rate from acceleration in the gap equals the energy loss rate

due to radiative cooling. These gamma rays will generate further electron-positron pairs via

photon-photon pair production. The only stable gap region that can be formed is one that

ends extends to the light cylinder allowing the created pairs to escape the magnetosphere

and preventing the gap from being quenched (Cheng et al., 1986).

As with the SG models, since the emission in the OG models take place at high altitudes

near the light cylinder special relativistic effects become prominent. Aberration and time-

of-flight delays play a large role and when accounted for can produce the wide separation

double-peak light curves typical of gamma ray pulsars (Romani, 1996). OG models are

capable of producing light curves which fit a wide variety of pulsars and are broadly accepted

as the location of high energy emission from pulsars. Many OG models assume the curvature

radiation plays the dominant role in the generation of gamma rays and many of the Fermi -

LAT detected pulsars exhibit light curves that can be replicated using the geometry of the

outer gap and spectral energy distributions which exhibit a power-law with an exponential

cutoff relation as predicted by curvature radiation.

Curvature radiation in an outer gap was the consensus explanation for gamma ray

emission pulsars until the 2011 VERITAS detection of pulsed emission from the Crab pulsar

above 100 GeV (VERITAS Collaboration et al., 2011) and the MAGIC detection of pulsed

emission from the Crab up to 1 TeV (Ansoldi et al., 2016). The gamma-ray spectrum of

the Crab pulsar has a break at 6 GeV but the flux beyond that break does not fall off

exponentially as predicted by curvature radiation models. This can be seen in Fig 2.2 and

Fig 2.8. This feature in the spectrum of the Crab could be explained by invoking a different

emission mechanism than curvature radiation and (Lyutikov et al., 2012b) argue that inverse

Compton scattering in the Klein-Nishina regime provides a consistent picture with current

observations. However, even if IC scattering can provide an explanation of the radiation

mechanism for the > 100 GeV gamma rays, the effects of pair absorption of these high
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Figure 2.8: Phase-folded spectral energy distribution of the Crab pulsar for peaks P1 and P2
from MAGIC (closed circles) and Fermi -LAT (open circles). Dashed line shows power-law
with exponential cut-off fit to Fermi -LAT data. Solid line shows fit using a broken power-law
to Fermi -LAT and MAGIC data. Figure taken from (Ansoldi et al., 2016).

energy gamma rays lead to other constraints on the location of the emission region (and field

geometry) that are, in part, the subject of this thesis and will be addressed in Chapter 6.
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Chapter 3

Axions

3.1 Introduction

Axions are theoretical pseudoscalar bosons which were first postulated in 1978 (Weinberg;

Wilczek) as a biproduct of the solution to the strong CP (charge conjugation (C) and parity

inversion (P)) problem with the theory of quantum chromodynamics (QCD). The axion

could result from a phase transition in the early universe and provide a natural candidate for

cold dark matter. A violation in CP-symmetry in strong interactions has not been observed

experimentally and has tight experimental upper bounds. In particular even a relatively small

CP violating term in the QCD Lagrangian would lead to a detectable neutron electric dipole

moment. Given the existence of a neutron magnetic dipole moment one can readily constrain

the neutron electric dipole moment. This can be done be measuring the Larmor precession

of the neutron spin in the presence of parallel and anti-parallel electric and magnetic fields.

The precession frequency for both cases is then:

hν = 2µBB ± 2dnE (3.1)
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where dn is the neutron electric dipole moment. dn can then be measured from the frequency

difference

dn =
h∆ν

4E
(3.2)

Experiments such as the RAL-Sussex-ILL experiment measure the Larmor precession frequency

using NMR on ultracold neutrons trapped inside a storage cell. The current limit set on the

neutron electric dipole moment is dn < 3.0× 10−26e cm (Baker et al., 2006).

A fine-tuning problem arises with QCD since a CP-violating term is not precluded and

is generally quite large. The solution to this issue was proposed by Roberto Peccei and Helen

Quinn and is known as the Peccei-Quinn (PQ) mechanism (Peccei and Quinn, 1977). Since

the proposal of the axion many laboratory and astrophysical searches have been developed

to confirm the existence of this particle. This chapter will discuss the theoretical basis for

the existence of axions and axion-like particles, the current state of terrestrial-based searches

for axions, and the current state of astrophysical searches for axions.

3.2 Theoretical Basis for Axions

The strong-CP problem of QCD represents a fine-tuning problem that is considered by

some theorists to be one of the most significant shortcomings of the theory. Here I focus on

the Peccei-Quinn solution to serve as a template for a broader class of models that predict

new axion-like particles.

In QCD, imposing a non-Ableian gauge symmetry results in a term in the Lagrangian

−1/4Ga
µνG

aµν where Ga
µν is the color field strength tensor given by

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ − gafabcGb
µG

c
ν (3.3)
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and where the Gi
ν terms are the gluon fields. This is closely analogous to electromagnetism

where the field tensor Fµν = ∂µAν − ∂νAµ, with Gi
ν corresponding to the electromagnetic

potential vector Aµ. The final term in Equation 3.3 comes from the nonvanishing commutator

of the non-Abelian gauge field and results in coupling of gluons to each other. Following the

usual prescription, local gauge invariance requires that one replaces the derivative operator

∂aµ with

Dµ ≡ ∂µ + iTaG
a
µ (3.4)

where Ta are the generators of the SU(3) group. This leads to the QCD Lagrangian in the

form

LQCD =
1

4g2
Ga
µνG

aµν +
∑
j

q̄j (iγµDµ +mj) qj (3.5)

where qj is the quark field of the jth flavor and mj is the jth quark mass.

However, QCD couples to the (CP-violating) electroweak sector through loop corrections.

These can be modeled by adding a CP-violating term to the effective QCD Lagrangian of

the form:

Lθ̄ = θ̄
g2

32π2
Ga
µνG̃

µν
a (3.6)

where Ga
µν is the QCD gluon field strength tensor for the eight color degrees of freedom, a,

and G̃µν
a is the dual tensor. Much like FµνF̃

µν constructed from the electromagnetic field

tensor Fµν and its dual F̃ µν , this tensor product (4 ~E · ~B for the electromagnetic case) is CP

odd.

To solve the strong-CP problem in the Peccei-Quinn theory, the θ̄ term is promoted to

a field rather than static parameter by adding a kinetic term 1/2∂µa)2 to the Lagrangian and

introducing a global, chiral symmetry U(1)PQ, which is spontaneously broken at the Peccei-

Quinn energy scale, fa. A pseudo-Nambu-Goldstone boson with a nonzero mass arises as
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a result (Wilczek, 1978; Weinberg, 1978). This pseudoscalar boson is known as the axion.

After introducing the new symmetry, the Lagrangian term takes the form:

La =
g2

32π2

aξ

M
Ga
µνG̃

µν
a (3.7)

where ξ is a model-dependent parameter, g is the coupling constant, M is the Peccei-Quinn

scale and a is the axion field. The axion, which begins life as a massless Nambu-Goldstone

boson acquires mass after the QCD phase transition through its coupling to gluons and hence

to pions. The mass can be calculated using approximate methods giving

ma0 =
Fπ
M

√
mdmu

md +mu

' 13 MeV

M [GeV]
(3.8)

where Fπ = 184 MeV is the pion decay amplitude and md, mu are the masses of the down

and up quarks, respectively.

The Peccei-Quinn mechanism works for any value of M , thus many orders of magnitude

are to be explored. Many different models of the axion exist which solve the strong CP

problem but produce different couplings of the axion to Standard Model particles. In general

one predicts a similar coupling to electromagnetism by virtue of triangle diagrams (see Figure

3.1) that naturally result from the coupling of axions to charged fermions, and the coupling

of charged fermions to photons. The Lagragian for this interaction is:

Laγγ = −1

4
gaγFµνF̃

µνa = gaγ ~E · ~Ba (3.9)

where Fµν is the electromagnetic field tensor, F̃ µν is the dual tensor, and gaγ is the axion-

photon coupling which is given by:

gaγ =
α

πM
(3.10)
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Figure 3.1: Feynmann diagram for axion coupling to photons

independent of the fermion mass.

Pierre Sikivie in a 1983 paper demonstrated the axions could be detected in a laboratory

setting by exploiting the two-photon coupling of the axion (Sikivie, 1983). Experiments that

take advantage of this coupling suggested by Sikivie have also been shown to be capable of

detecting a broader class of particle, an axion-like pseudoscalar φ, that couples to photons

in a fashion which mirrors Eq. 3.9 (Massó and Toldrà, 1995):

Lφγγ = −1

4
gφγFµνF̃

µνφ = gφγ ~E · ~Bφ (3.11)

Such a class of particle is often assumed to only couple to two photons, unlike the axion

which couples to other Standard Model particles. This breaks the relationship between the

axion mass, the symmetry breaking scale, and thus the relationship between gaγ and M

(see Equation 3.10. A φ−particle does not require the relation between the mass mφ and

the coupling g that the axion has. The mass and coupling to photons are independent

parameters. This broader class of particles is referred to as axion-like particles (ALPs)

to distinguish these from the classical QCD axions discussed. ALPs arise from the basic

physical mechanism, the Peccei-Quinn mechanism, that provides a solution to the strong

CP problem. ALPs can provide a candidate for the dark matter problem but unlike classical

axions can not solve both problems.
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There have been a number of searches conducted since 1977 in hopes of finding either

axions or axion-like particles. To date none of the efforts have successfully identified axions

or ALPs. The search efforts are easily divided into two categories: laboratory-based seraches

and astrophysical searches. The following sections will discuss past efforts and the current

constraints on axions and ALP parameter space.

3.3 Axions as Dark Matter

Axions have been considered as one possible dark matter candidate. Axions satisfy two

necessary criteria for cold dark matter (CDM): (1) Axions are effectively collisionless and (2)

a population of non-relativistic (cold) axions may exist in an abundance which would provide

the necessary dark matter density. The mass of axions at temperatures 1012 K is related

to the PQ–symmetry breaking energy scale M by Equation 3.8. Here and elsewhere in this

chapter we closely follow the discussion in (Weinberg, 2008). Cosmological considerations of

axions provide an upper bound on M and thus a lower bound on ma.

Cold axions may be produced by three different mechanisms: vacuum realignment,

string decay and domain wall decay (for a review on axion cosmology and descriptions of

the cold axion production mechanisms see Sikivie (2008)). The cosmological axion field is

predicted to be spatially homogeneous. The energy density and pressure for the axion field

or any similar pseudoscalar (ALP) or scalar field are given by

ρa =
1

2
ϕ̇2 +

1

2
m2
aϕ

2 (3.12)

pa =
1

2
ϕ̇2 − 1

2
m2
aϕ

2 (3.13)
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where ϕ is the axion field. The equation of motion for ϕ in a background Robertson-Walker

metric, is

ϕ̈+ 3H(t)ϕ̇+m2
a(t)ϕ = 0 (3.14)

where H(t) is the Hubble constant at time t. The equation of motion has solutions: ϕ =

constant and ϕ ∝ 1/a3 where a is the scale factor and ϕ = constant is rejected on physical

grounds. For ϕ ∝ 1/a3 and times when H(t)� ma(t) the energy density becomes

ρa →
1

2
m2
aϕ

2
1

(
a(t1)

a(t)

)3

(3.15)

where ϕ1 is a constant of order M , t1 is the time at which H(t1) = ma0. The present axion

density can be determined to be

ρa(t0) ≈ 1

2
m1/2
a N

−1/4
1 ϕ2

0

(
4π3G

45

)3/4

(kbTγ0)3 (3.16)

where N∞ is the effective number of types of particles with masses much less than kbT (t1),

kb is the Boltzmann constant, and Tγ0 is the photon temperature at present time.

Assuming that ϕ0 ≈ M and ignoring factors of order unity, the axion density can be

shown to be a fraction Ωa of the critical density:

Ωah
2 ≈

(
ma/10−5 eV

)−3/2
(3.17)

At the extreme, if axions constitute the entirety of dark matter, then ma ≈ 10−5 eV. If

axions are only a component of the dark matter density, then 10−5 serves as a lower bound

on the axion mass. For ALPs, since the relationship between mALP, gaγ and M is broken,

ALPs may or may not play a role as a component of dark matter depending on the value of

the symmetry breaking scale, mass and other parameters.
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3.4 Astrophysical Axion Constraints

The axion or axion-like particles could plausibly take on a wide range of values for their

mass and coupling constants. Having many orders of magnitude in the parameter space to

explore allows a variety of approaches to search for evidence of the existence of axions or

ALPs. Axions could be produced in hot plasmas, such as those found in an abundance of

astrophysical objects and the existence of axions would have affect well-studied astrophysical

processes allowing a number of astrophysical constraints. Axions also convert to photons in

the presence of strong magnetic or electric fields, providing for a mechanism of detection in

terrestrial experiments. Parameters of axions and ALPs can be constrained by a combination

of direct terrestrial searches and indirect astrophysical constraints. The following will discuss

various bounds set on the axion/ALP parameter space by experiments and astrophysical

observations.

3.4.1 Constraints from Globular Clusters

Globular clusters (GC) serve as an interesting astrophysical laboratory for searching

for axion signatures. A GC is a gravitationally bound cluster of stars which formed at

roughly the same time. GCs are important systems for testing theories on stellar evolution

since the stars share the same age, but not necessarily other characteristics such as mass

or surface temperature. One such test would be including axions in calculations of the

rate of helium burning in horizontal branch stars. Observations of GCs have yielded the

result that the theoretical helium-burning lifetime of low-mass stars is in agreement with

observations to within 10%. The introduction of a nonstandard energy-loss rate accelerates

the rate of nuclear fuel consumption while leaving the stellar structure largely unaffected.

In helium burning stars the rate of helium consumption could be accelerated due to the
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presence of axions. Horizontal branch stars have a core mainly composed of He. As such,

the accelerated consumption of He due to axions is easily calculated and found to reduce the

lifetime of horizontal branch stars by a factor

[
1 +

3

8

( gaγ

10−10 GeV−1

)2
]−1

(3.18)

(Raffelt, 1996). A study conducted on the lifetime of horizontal branch stars in 15 GCs

places a limit on on the axion-photon coupling constant at gaγ . 10−10 GeV−1 for axion

masses ma & 30 keV (Raffelt, 2008)

3.4.2 Constraints from White Dwarf Cooling Times

As a horizontal branch star reaches the late stage of its helium burning phase it enters

the asymptotic giant branch (AGB) of the Hertzsprung-Russell diagram. AGB stars consist

of a degenerate carbon-oxygen core and a helium burning shell. AGBs may later evolve into

white dwarf star which cools first by neutrino emission and later surface photon emission.

The existence of axions would allow an additional cooling channel for white dwarfs via axion

bremsstrahlung:

e+ Ze→ e+ Ze+ a.

This additional cooling channel would increase the cooling rate of white dwarfs. From

observations, the white dwarf luminosity function shows an agreement between the cooling

speed and the theoretical expectations allowing a constraint to placed on the axion-electron

coupling gae . 1.3× 10−13 for axion masses ma < 0.03 eV (Raffelt, 1986).

A more recent method for constraining axion/ALP parameters using white dwarfs

analyzes the level of linear polarization in radiation emitted from magnetic white dwarfs.

Photon-axion oscillations in the magnetosphere of white dwarfs can enhance the level of
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linear polarization that is observed. Using this method, a constraint is placed on the axion-

photon coupling constant gaγ < 10−10 GeV−1 for axion masses 10−6 < ma < 10−3 eV (Gill

and Heyl, 2011).

3.4.3 Constraints from SN 1987A

Observations of SN 1987A have had far reaching implications for astrophysics. SN

1987A confirmed many theories about core collapse supernovae and also provided the first

evidence for astrophysical neutrinos (Bahcall, 1989; Arnett et al., 1989; Bionta et al., 1987;

Hirata et al., 1987). In addition, SN 1987A provided an opportunity to study and constrain

axion parameters. The existence of axions/ALPs would potentially play a prominent role in

the cooling of the newly born neutron star which could have resulted in an observable effect

on the duration of the neutrino flux from SN 1987A. Nucleon-nucleon axion bremsstrahlung

would be the most relevant physical process for cooling. It has been shown in the literature

that an axions with masses 10−3 eV . ma . 0.02 eV would significantly affect the rate

of cooling of the neutron star born in SN 1987A shortening the timescale of the neutrino

burst and allowing for fewer neutrinos to be produced. With axion cooling incorporated into

numerical models for SN 1987A it has been calculated that the number of neutrinos detected

from SN 1987A would have been significantly lower than what was observed, thus essentially

eliminating the possiblity of dark-matter axions/ALPs in the mass range 10−3 eV . ma .

0.02 eV are precluded (Burrows et al., 1989; Turner, 1988).

3.5 Searches for Axions/ALPs

A variety of experimental methods have been used to search for axions and ALPs.

Fig. 3.2 shows current constraints placed on the axion/ALP coupling constant and the
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Figure 3.2: Summary of current constraints, future prospects and hints in axion/ALP
parameter space. The classical QCD axion parameter space is shown by a yellow band.
Axionic dark matter parameter space is shown by orange bands. In the region labeled
“WIMP-axion CDM” axions would only comprise a fraction of the dark matter energy
density. Prospects for IAXO and ADMX are shown by hatched regions. Figure taken
from Carosi et al. (2013).

axion/ALP mass from a variety of search methods, many of which will be described in

the following sections. Most searches for axions and ALPs are based on the same basic

principle, the Primakoff effect. The Primakoff effect is the conversion of photons into axions

by interacting with electric or magnetic fields acting as virtual photons. The effect arises

from the aFµνF̃µν term in the Lagrangian giving rise to a term ga ~E · ~B. Not that this

term represents the combined contribution of a direct coupling of axions to photons, or the

coupling through fermion triangle diagrams (see Figure 3.1) a necessary consequence of the

aGµνG̃µν term in the Lagrangian. The Feynman diagram for this interaction is shown in

Fig. 3.3.
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a γ

~B

Figure 3.3: Feynmann diagram for the Primakoff effect.

3.5.1 Helioscope Searches

The Sun provides a good target for axion and ALP searches due to its proximity

to Earth and its ability to produce axions within its core. Constraints on the axion/ALP

coupling to photons have been determined by considering photon interactions via the Primakoff

process with the Coulomb field of electrons or nuclei within the Sun. Bahcall et al. (1982)

assume that Standard Solar Model (SSM) remains unchanged by the presence of axion mixing

and determine the solar flux of axions to be

La = 1.7× 10−3
( gaγ

10−10 GeV−1

)
L� (3.19)

where L� is the solar luminosity. Helioseismological sound-speed profiles have been used to

constrain deviations from standard solar models leading to constraints on solar energy losses

through the Primakoff emission of axions. This yields the constraint on the axion-photon

coupling gaγ < 1.1× 10−9 GeV−1 (Schlattl et al., 1999).

One type of direct search experiment technique used to search for these solar axions

are Bragg scattering helioscopes. Typically these are not purpose-built experiments, but

detectors constructed for WIMP dark matter detection, or more generally, the detection of

∼keV energy deposition from rare events. The spectral energy distribution of solar axions

is predicted to be peaked between 1− 10 keV corresponding to the solar core’s temperature

which puts the axion wavelength on the same order as the lattice spacing in a typical crystal.

Crystalline detectors exploit the Coulomb field within a crystal to convert solar axions.
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Characteristic Bragg scattering patterns would be produced, and the time variation of the

signals would be distinctive due daily modulation from the relative diurnal movement of the

Sun. Examples of this type of experiment include a sodium iodide crystal used in DAMA

(Bernabei et al., 2001), a germanium crystal used in SOLAX (Avignone et al., 1998) and

COSME (Morales et al., 2002), and germanium and silicon crystal used at CDMS (Ahmed

et al., 2009). These experiments have found comparable limits g . 2× 10−9 GeV−1.

The other type of helioscope experiment use a powerful magnet to induce axion-photon

mixing by the Primakoff process. The magnet is pointed at the Sun and is capable of

converting solar axions into X-ray photons which can be observed by X-ray detectors in the

instrument. The probability of axion-photon conversion in a homogeneous magnetic field,

B, over a coherence length, L, is (van Bibber et al., 1989)

Pa→γ =
(gaγBL/2)2

L2 (q2 + Γ2/4)

[
1 + e−ΓL − 2e−ΓL/2 cos (qL)

]
(3.20)

where Γ is the inverse absorption length for X-rays and q is a term for the momentum

transferred in the axion-photon interaction.

The first generation of this type of purpose-built axion helioscope was built at Brookhaven

National Laboratory in 1992 using a stationary dipole magnet with B = 2.2 T. This first

axion helioscope set a 3σ limit on the axion coupling at gaγ = 3.6× 10−9 GeV−1 for masses

ma < 0.03 eV (Lazarus et al., 1992). A second generation of axion helioscope with a 4.4

T magnet was built at the University of Tokyo, the Tokyo Axion Helioscope (SUMICO).

SUMICO also employed dynamic tracking of the sun. SUMICO set a limit on the axion

coupling at gaγ = 6.0 × 10−10 for masses ma < 0.03 eV (Ohta et al., 2012). The third

generation of axion helioscope is the CERN Axion Solar Telescope (CAST) which uses a

dipole test magnet with B = 9 T from the Large Hadron Collider. As of this writing, CAST

has set the best limits from axion helioscopes on the axion coupling, gaγ = 8.8 × 10−11 for
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masses ma < 0.02 eV (Andriamonje et al., 2007). The International Axion Observatory

(IAXO) is a fourth generation helioscope that has been proposed. IAXO will use a large

superconducting toroidal magnet with a maximum field strength of 5.4 T. The field strength

is not as large as CAST, but the magnet is larger providing a larger distance over which

an axion will travel through the strong magnetic field. IAXO is expected to have a signal

to-background-ratio 4-5 orders of magnitude more sensitive than CAST allowing IAXO to

reach the ∼ 2 × 10−12 GeV−1 regime for the axion coupling constant for masses ma . 0.25

eV (Armengaud et al., 2014).

3.5.2 Haloscopes

Axion haloscopes are used as a direct search method to detect galactic halo dark

matter axions and ALPs. Sikivie proposed the first method for searching for dark matter

(DM) axions (Sikivie, 1983) by using microwave cavities. Sikivie showed that an axion

propagating through a microwave cavity in the presence of a strong magnetic field could

resonantly convert into a monochromatic microwave signal (e.g. a 4.13µeV axion would

convert into a 1 GHz photon). The size of the microwave cavity is designed to be adjustable

to search over a range of possible axion masses.

The first generation of haloscope experiments were conducted at Brookhaven National

Laboratory and the University of Florida in the 1980s. Brookhaven National Lab searched

the mass range 4.5 − 16.3µeV and set a limit on the axion coupling gaγ < 10−6 GeV−1

(Wuensch et al., 1989). The University of Florida experiment examined a much smaller

mass range 5.4− 5.9µeV and set a comparable limit on the axion coupling (Hagmann et al.,

1990). The second generation of haloscope is the Axion Dark Matter eXperiment (ADMX).

The magnet for ADMX is a NbTi superconducting magnet that is 0.5 m in diameter and 1 m

long. ADMX has explored the mass range 1.9− 3.65µeV (Asztalos et al., 2010). ADMX at
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High Frequencies (ADMX-HF) is currently under development as an upgrade to ADMX that

will allow for a microwave cavity search for axionic dark matter up to ∼ 100µeV (Shokair

et al., 2014).

3.5.3 Light Shining Through Wall Searches

A different type of axion search is one which does not rely on astrophysical or cosmological

sources of axions or ALPs. These searches are purely laboratory based. These experiments

rely on the principle of photon regeneration. A polarized laser beam that propagates through

a transverse magnetic field is blocked by some optical barrier, or wall. There is some

probability of detecting photons on the other side of the barrier. This is possible if the

photons have a probability, given by 3.20, to convert to weakly-interacting axions or ALPs

that will pass through the optical barrier nearly unimpeded to the other side. If there is a

second transverse magnetic field on the far side, these axions or ALPs can then reconvert

to photons the same wavelength as those produced by the laser and can be detected. Such

experiments are referred to as light shining through walls (LSW) experiments.

One such LSW experiment is the Any-Light-Particle-Search (ALPS) located at the

DESY site. ALPS uses a superconducting HERA dipole magnet with B = 5 T over a

length of 8.8. The light source for ALPS is a 35 W, 1064 nm laser. In 2010 the ALPS

experiment reported constraints on the axion/ALP coupling gaγ . 7 × 10−8 GeV−1 (Ehret

et al., 2010). An upgrade to the experiment, ALPS-II, is currently under production. ALPS-

II, amongst other upgrades, will include twenty straightened HERA dipole magnets with

B = 5.3 T over a length of 100 m. With the upgrade ALPS-II is expected to probe the

regime gaγ ∼ 10−11 GeV−1 for a range of masses (Bähre et al., 2013).
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Figure 3.4: Exclusion limits on the axion/ALP coupling constant and mass from the first
two OSQAR data runs. The exclusion limits from ALPS is shown for comparison in red.
Figure taken from Pugnat et al. (2014).

Another such LSW experiment is located at CERN, the Optical Search for QED vacuum

birefringence, Axions and photon Regeneration (OSQAR) experiment. OSQAR uses two

LDC dipole magnets producing a transverse magnetic field B = 9 T over a distance of 14.3

m. The OSQAR light source is a multi-line mode ∼ 3.3 W laser with (on average) 2/3 power

at 514 nm and 1/3 power at 488 nm. In the second data run of the experiment, OSQAR

was able to place a limit on the axion/ALP coupling gaγ . 8× 10−8 GeV−1 (Pugnat et al.,

2014). A summary of the constraints in gaγ,ma parameter space from OSQAR and ALPS

is shown in Fig. 3.4

3.5.4 AGN/Blazar Searches

Another avenue for searching for evidence of ALPs makes use of observations of very

high energy (VHE; E > 100 GeV) gamma rays emitted by active galactic nuclei (AGN).
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Figure 3.5: Illustration of ALP oscillation scenarios near the source and in the intergalactic
magnetic field. Figure taken from Sánchez-Conde et al. (2009).

The gamma-ray emission from these cosmological sources is understood to be attenuated in

an energy-dependent fashion by the extra-galactic background light (EBL) (Stecker et al.,

1992). Gamma rays are absorbed via pair-production γγ → e+e−. Observations of many

AGNs by imaging atmospheric Cherenkov telescopes (IACTs) such as HESS, MAGIC and

VERITAS at high redshifts and in the VHE range seem to indicate that the universe is more

transparent to VHE gamma rays than predicted by EBL models.

One possible explanation for this apparent transparency is that the oscillations of

photons into ALPs in the extragalactic magnetic fields could allow for the avoidance of the

EBL attenuation of the AGN spectra (de Angelis et al., 2007). The effect of these oscillations

is more pronounced with magnetic fields at the nanoGauss (nG) scale, which is within

present constraints but not observationally proven and oerhaos irders of magnitude larger

than the values indicated by recent observations of pair halos (see e.g. Chen et al. (2015)

and references therein). Another possibility proposed is that the ALP-photon oscillations

occur within magnetic fields of the AGNs producing a substantial ALP-flux and then some

fraction of the ALPs reconvert to gamma rays in the galactic magnetic field of the Milky Way

and are observed by IACTs (Simet et al., 2008). Fig. 3.5 illustrates the different possible

oscillation scenarios.
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All of the previously described scenarios require ALP interaction with an external

magnetic field via the Primakoff effect for oscillation to occur. The probability of ALP-

photon oscillations in an external magnetic field is (Raffelt and Stodolsky, 1988):

P0 = sin2 2ϑ sin2

Bdgaγ
2

√
1 +

(
Ecrit

Eγ

)2
 (3.21)

where d is the distance traveled, B is the magnetic field component along the polarization

vector of the photon, θ is a mixing angle and Ecrit is the critical energy, measured in GeV,

above which mixing occurs. The mixing angle and critical energy are defined:

sin2 2ϑ =
1

1 + (Ecrit/Eγ)
2 (3.22)

Ecrit =
5

2

m2
µeV

g11BG

(3.23)

where the subindices indicate the following dimensionless quantities: mµeV = m/µeV, g11 =

gaγ/10−11 GeV−1, and BG = B/Gauss. The effective ALP mass is m2 ≡ |m2
a − ω2

pl| and the

plasma frequency is ωpl =
√

4παne/me = 0.37× 10−4µeV
√
ne/cm−3.

For intergalactic propagation of gamma rays, many coherent magnetic field domains

will be traversed over a large distance, r. For a sufficiently large number of traversed domains

the probability of oscillation becomes (Mirizzi et al., 2008):

Pγ→a =
1

3

[
1− exp

(
−3P0N

2

)]
(3.24)

where P0 is given by Equation 3.21 and N is the number of coherent domains.

The attenuation of gamma rays from AGNS via interaction with the EBL corresponds

to an optical depth τ (E, z) such that F = Fse
−τ where Fs is the photon flux at the source.
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Figure 3.6: Left: Effect of ALP-photon oscillations inside source and in IGMF on the
spectrum of 3C 279 and PKS 2155-304 for two EBL models: Kneiske (dashed line) and
Primack (solid line). Expected photon flux without ALP mixing is shown for comparison
(dotted line for Kneiske model and dot-dashed line for Primack model). Right: Boost in
intensity of photon flux due to ALP mixing. Figure taken from Sánchez-Conde et al. (2009).

ALP-photon oscillations could lead to an alteration of this optical depth, as previously

described, leading to a revised equation for the spectrum F = FSe
−τφALP where φALP =

e±∆τ . The plus sign indicates an enchanced observed photon flux, since the optical depth is

increased. The negative sign indicates an enhanced attenuation if more photons are lost via

ALP mixing than predicted by the EBL model alone.

One study conducted by Sánchez-Conde et al. (2009) looked at modeled spectra of two

AGNs, 3C 279 and PKS 2155-304. This study found extra attenuation of gamma rays in

the energy range 200 − 300 GeV, regardless of ALP or IGMF parameters. At ≥ 300 GeV

energies an enhancement of the photon flux due to ALP oscillations is found. These findings

are summarized in Fig. 3.6
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Figure 3.7: ALP parameter space with lower limits on the axion-photon coupling constant
found by studying 15 AGNs with various ground-based gamma-ray telescopes. Several
magnetic field scenarios are considered. Limits from each scenario are in different shades of
blue. Only the FRV EBL model results are shown. Figure taken from Meyer et al. (2013).

In 2013, the first lower limits were placed on the axion/ALP coupling constant using

AGN observations from several ground-based gamma-ray telescopes (Meyer et al., 2013).

The study examined the very high energy spectra of 15 AGNs using data from HEGRA,

H.E.S.S., CAT, MAGIC, VERITAS and Whipple. Several magnetic field scenarios were

considered at the source, in the IGMF and in the Milky Way. The parameter space excluded

for the various magnetic field scenarios can be seen in Fig. 3.7.

A more recent study (Ajello et al., 2016) used 6 years of observations of NGC 1275

from the Fermi Large Area Telescope (Fermi-LAT ) to constrain ALP parameters. Given

current constraints on the ALP-photon coupling and the relatively short distance to NGC

1275 (0.017559) no strong irregularities were expected. This source was investigated due to

the bright gamma-ray flux and the presence of a relatively high magnetic field in the Perseus

cluster where NGC 1275 is located. No irregularities due to ALP-mixing were detected and
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Figure 3.8: Left: Observed and expected 95% confidence limits on ALP mass and coupling
derived from 6 years of Fermi -LAT observations of NGC 1275. Expected limits are from
400 Monte Carlo simulations. Right: Comparison of constraints from Fermi -LAT to other
constraints from other works. Figure taken from Ajello et al. (2016).

ALP-photon couplings were ruled out between 0.5 < g11 < 3 for ALP masses 0.5 < mneV < 5

and g11 > 1 for 5 < mneV < 10 as can be seen in Fig. 3.8.

3.5.5 Constraints from Neutron Stars

Neutron stars are another astrophysical laboratory that has been used to investigate

the expansive parameter space of axions and ALPs. In 1984 Naoki Iwamoto considered the

possibility of axion emission from neutron stars (Iwamoto, 1984). The emission of axions

from neutron stars would provide another cooling mechanism and for some ranges of axion

parameters, would be the dominant cooling mechanism allowing for constraints to be placed

on axion parameter space from observations of the surface temperature of neutron stars.

The two main processes considered were nucleon-nucleon axion bremsstrahlung

N +N → N +N + a
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and electron-nucleon axion bremsstrahlung

e+N → e+N + a.

The case of a nonsuperfluid and a superfluid core for the neutron star were each considered.

For the nonsuperfluid case, nucleon-nucleon axion bremsstrahlung was the most important

process. For the superfluid core scenario electron-nucleon axion bremsstrahlung was found

to dominate. After comparing the axion luminosity with the neutrino luminosity and the

surface photon luminosity Iwamoto showed the time for cooling of a neutron star will be

significantly shorten unless ma . 4× 10−2 eV.

In 1986 Donald Morris expanded on the work of Iwamoto and examined the interaction

of the thermally emitted axions with the magnetic field in the pulsar magnetosphere via the

Primakoff effect. Morris showed that thermal axions would be produced with energies to

convert to x-ray photons in pulsar magnetospheres. Morris found that for axion parameters

that allow efficient conversion in the magnetosphere, the observed x-ray flux would be

enhanced. At the time the study was conducted the observational limits on the x-ray flux

of the two pulsars considered, Vela and the Crab, were not sufficient to place constraints on

the axion mass or coupling constant (Morris, 1986).

A more recent study published in 2016 examined 5 years of gamma-ray data from

the Fermi -LAT on 4 neutron stars (Berenji et al., 2016). This study follows a similar

methodology to the work of Iwamoto and Morris by considering the nucleon-nucleon axion

bremsstrahlung in the neutron star core as the emission mechanism for axions. Then the

conversion of the thermal axions to photons via the Primakoff process is considered. For the

parameters used in the study the converted photons are expected to lie in the energy range

observable by the Fermi -LAT. The excluded parameter space is shown in Fig. 3.9
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Figure 3.9: Excluded regions of ALP parameter space (ma, fa) from a study of 5 years of
Fermi -LAT data for 4 neutron stars (labeled NS). Excluded parameter space from studies
of SN 1987A are labeled SN 1987A. Allowed parameters for the classical Peccei-Quinn axion
are shown with a black line. Figure taken from (Berenji et al., 2016).
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Chapter 4

VERITAS Instrument and Analysis

Techniques

The Very Energetic Radiation Imaging Telescope Array System, VERITAS, is a

high-energy gamma-ray observatory of an array of imaging atmospheric Cerenkov telescopes

(IACT). The VERITAS array is located in southern Arizona, near Tucson (see Fig 4.1). The

following chapter will discuss the VERITAS instrument, the standard analysis methods, and

the periodic analysis methods used for pulsar observations.

4.1 Imaging Atmospheric Cherenkov Technique

Earth’s atmosphere is completely opaque to very high energy (VHE; E > 100 GeV)

gamma rays. However, in this energy range the interactions initiated by gamma rays in the

Earth’s atmosphere allow detection at the ground, via the imaging atmospheric Cherenkov

technique proposed by Weekes and Turver (Weekes and Turver, 1977). When a gamma ray

or charged cosmic-ray enters the atmosphere it will induce an extensive air shower. Fig. 4.2

depicts the electromagnetic cascade induced by a gamma ray.
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Figure 4.1: The VERITAS array located at the Fred Lawrence Whipple Observatory near
Tucson, AZ

The electromagnetic cascade induced by a gamma-ray photon begins with the production

of on electron-positiron pair by the photon’s interaction with the Coulomb field of nearby

atmospheric particles. The produced pair of charged particles radiate gamma rays via

bremsstrahlung as they are slowed by the Coulomb field of atmospheric particles. These

secondary gamma rays further pair produce leading to an avalanche of particles and gamma

rays. This cascade grows exponentially and is eventually halted when the electrons rapidly

lose their energy by ionization loss (climbing up the Bethe-Bloch dE/dx curve) and the

photons produced via bremsstrahlung no longer have the requisite energy for pair production.

All along the cascade the electrons and positrons (often moving faster than the speed of light

for the local medium) radiate Cherenkov light. The resultant flash of Cherenkov emission

lasts 10 ns and is spread over an area of ∼ 130 m in radius.

The hadronic cascade induced by a charged cosmic ray, typically a proton, is distinguishable

from the electromagnetic cascades. A hadronic cascade results in the production of many

secondary particles: pions (π±, π0), neutrinos, muons, electrons and positrons. The inelastic

scattering of the secondary particles and the overlap of many induced electromagnetic

cascades result in an image from the Cherenkov radiation that is broader and irregularly

shaped in comparison to the image produced by the gamma ray-induced electromagnetic
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Figure 4.2: Model of electromagnetic cascade induced by VHE gamma ray interaction in the
Earth’s atmosphere

cascades. Hadronic showers are isotropically distributed in the sky and outnumber the

gamma ray-induced electromagnetic cascades. The differences seen in the Cherenkov image

provide a pathway to separate the hadronic background from gamma ray events. For a full

description and details of extensive air showers see Longair (2011) and (Völk and Bernlöhr,

2009)

The technique used by IACTs is to employ large optical reflectors to focus the Cherenkov

emission from air showers onto a pixelated camera comprised of many photomultiplier tubes

(PMTs). The fast response time of the PMTs and electronics in the telescopes allow the

faint Cherenkov images to be observed against the night-sky background. The telescopes

can form images of the air showers from the collected Cherenkov emission. The Cherenkov

signal produces a two-dimensional projection of the air shower in the shape of an ellipse.

The orientation of the ellipse is used to determine the arrival direction of the air shower.

The intensity of the Cherenkov signal is used to determine the energy of the initial particle

or gamma ray. Other geometric properties of the image, known as the Hillas parameters
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(a) Figure taken from Völk and Bernlöhr (2009)

(b)

Figure 4.3: Figures showing the shower geometry as an image in an IACT. (a) depicts how
a shower forms a projection in the IACT camera. (b) is a schematic of a gamma ray shower
imaged by 4 VERITAS telescopes and the geometry of the images is used to reconstruct the
shower direction.

(see Section 4.2.1 for details), are used to separate hadronic signals from electromagnetic

signals (Hillas, 1985). Modern IACTs use an array of telescopes to stereoscopically image

air showers. Stereoscopic imaging provides better reconstruction of extensive air showers.

In comparison to a single telescope, arrays allow for improved angular resolution, energy

resolution, background rejection and increased sensitivity. Telescope arrays also allow for

large effective areas providing an advantage over size-limited space-based observatories.

The VERITAS array consists of four identical 12-meter diameter Davies-Cotton design

telescopes arranged in a quadrilateral footprint. Each telescope’s optical reflectors consist

of 350 hexagonal glass mirrors, each with area of 0.32 m2, for a total area of 110 m2

for each reflector. The mirrors direct light into a pixelated camera comprised of 499 UV-

sensitive photomultiplier tubes with a total field of view of 3.5◦. Further details of the

VERITAS camera system can be found in Holder et al. (2006) and D. B. Kieda for the
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VERITAS Collaboration (2013). Signals from the camera are sent to telescope trigger and

data acquisition electronics systems which are discussed in detail in Buckley (1999), Holder

et al. (2008), and Staszak et al. (2015). VERITAS has a collection area of approximately 105

m2 (Krawczynski et al., 2006). VERITAS is sensitive in the energy range of 85 GeV to > 30

TeV, with an energy resolution of 15% − 25% at 1 TeV and a typical angular resolution of

< 0.1◦. For further information about VERITAS specifications refer to Holder et al. (2008).

4.2 Analysis Technique

4.2.1 Summary of Standard Data Analysis Methods

Data from the VERITAS telescopes consists of digitized PMT signal traces (from 500

MHz FADCs) and ancillary information such as GPS timestamps. The data is processed

through an analysis pipeline which, among other things, separates gamma-ray signals from

noise in the waveforms from Poisson fluctuations in the night-sky background, derives parameters

for the air showers, determines strength and significance of the gamma-ray signal over the

remaining cosmic-ray background and calculates the spectrum of the remaining gamma-

ray excess. There are two standard analysis packages used for VERITAS data analysis:

EventDisplay (Daniel, 2008) and the VERITAS Gamma Ray Analysis Suite, VEGAS

(Cogan, 2008). Both analysis suites are C++ object-based codes using the ROOT (Brun

and Rademakers, 1997) data structures and libraries. Both employ similar methods of image

cleaning (identifying true signals against the night-sky background), image parameterization

and stereoscopic reconstruction, with some minor differences in the implementation (Daniel,

2008). The VERITAS data analysis presented in this work uses the VEGAS package. The

standard analysis of VERITAS data proceeds as follows:
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� calibration of pixel data and image cleaning,

� image parameterization and shower reconstruction,

� stereoscopic reconstruction,

� background rejection via gamma-hadron separation,

� significance calculation and reconstruction of spectrum.

In the first step of the analysis procedure, calibration parameters are calculated. The

pedestal, pedestal variation and relative gains are calculated. LED flasher runs are used

to calculate the relative gains between pixels and to calculate timing offsets in the different

channels (more details on the flasher system and calibration methods can be found in Hanna

et al. (2010)). Image cleaning is performed by selecting so-called picture pixels with signal

pulse-height above a threshold. The threshold is typically given as the sum of the pedestal

and 5 times the standard deviation of the pedestal variations. Pixels adjacent to these high

threshold picture pixels that also are above a different threshold (2.5 times their pedestal

standard deviation) are selected and designated ”boundary” pixels. Pixels meeting these

thresholds (both picture and boundary) are assigned to the image, while isolated pixels and

pixels not meeting the criteria have their charge set to 0. The image produced is then

parameterized with a moment analysis. The following parameters are most important for

data analysis:

� Size: number of digital counts in the image providing a rough estimator of the shower

energy,

� Length: determined from the second moments of the image this is the approximate

length of the major axis of image ellipse,
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� Width: determined from the second moments of the image this is the approximate

length of the minor axis of image ellipse. and

� Distance: the angular separation from the image centroid to the center of field of view

Loose cuts on parameters such as size and distance are used as the first stage of analysis and

constitute a set of cuts that form the standard ”image quality” selection criteria. If quality

criteria are met for a requisite number of images for an event then stereoscopic reconstruction

is performed for the event. Image information is compared to lookup tables of parameters

for simulated gamma ray showers. From these lookup tables the shower direction, the shower

core impact location and energy of the air shower can be determined.

With the shower reconstructed, gamma-ray showers are separated from cosmic-ray

showers. The standard method for gamma-hadron separation is to calculate geometric mean

scaled parameters and make cuts based on these parameters. A mean scaled parameter

(MSP) is given for some parameter, P , by:

MSP =
1

Ntel

Ntel∑
i=1

Pi
Psim (θ, Size, r)

(4.1)

where Ntel is the number of telescope images, Psim is the expected value of P found from a

lookup table, θ is the zenith angle and r is the impact distance. More details of gamma-

hadron separation methods can be found in Krawczynski et al. (2006).

Since analysis cuts still leave a substantial background of misidentified (gamma-like)

cosmic-ray events this background must be measured and subtracted to find the excess

number of gamma-ray like events from a particular direction in the sky. Thus VERITAS

observations are typically conducting using the wobble mode where the observed source is

kept in the field of view for the duration of observation but the telescope pointing is offset

from the source position by a set amount (0.5◦ for VERITAS). The direction of the offset is
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alternated between the four cardinal directions (N, S, E, W) to reduce systematic errors. For

this work the background model employed is the ring-background method. A second model

commonly used is the reflected-regions method. For the ring-background method a model

ring around a trial source position is used to provide a background estimate. Further details

on the VERITAS background estimation methods can be found in Berge et al. (2007).

A gamma-ray signal is extracted from the data by calculating the number of excess

gamma-ray events, Nex = Non − αNoff . Non is the number of counts within the defined ON

source region, Noff is the number of counts within the defined OFF region as specified by the

background model, and α is a relative normalization factor (details can be found in Berge

et al. (2007)). Having a number of excess counts does not necessarily imply an actual signal

from a gamma ray source. The significance of a detection is typically calculated using the

method of Li & Ma (Li and Ma, 1983) where the significance S is defined as:

S =
√

2

(
Non ln

[
1 + α

α

(
Non

Non +Noff

)]
+Noff ln

[
(1 + α)

(
Noff

Non +Noff

)])1/2

(4.2)

A significance of S = 5 or 5σ is required to be considered a detection of a source by VERITAS.

A variety of statistical methods are employed in different analyses, but the Li & Ma method

is widely used and can be expressed in a relatively simple, closed-form as shown in Eq. 4.2.

4.2.2 Spectral Reconstruction

For a significant excess of gamma-ray events from a source the energy spectrum of that

source can be reconstructed. For the spectral energy reconstruction it is first necessary to

calculate the effective area of the telescope. The effective area Aeff is, in part, calculated

from lookup tables of simulated gamma-ray showers created by Monte-Carlo methods using a

procedure described in Kertzman and Sembroski (1994). The optical photons resulting from
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the simulated showers are then propagated through a detector model of the telescope array

(Maier, 2008). A complication arises since effective areas are derived using true energies from

the Monte Carlo simulations while only reconstructed energies are available for observational

data. A given photon event may migrate from its true energy bin i to a different energy

bin j for its reconstructed energy. To account for this a modified effective area is created

by essentially smearing the distribution of events in each energy bin. A spectral function

is defined (most sources are adequately described by a power law) and the simulations are

re-weighted according to the defined spectral function. A migration matrix Mij is defined

to keep track of number of events migrating from some energy bin i into an energy bin j.

The distribution of events from simulations is then adjusted using the known fraction of

mis-reconstructed events in each energy bin from the migration matrix. The spectral energy

distribution (SED) is defined as the number of events per unit area per unit time per unit

energy:

dN

dE
(E) =

Nexcess(E)

Aeff(E)TobsdE
(4.3)

where Tobs is the dead-time corrected observation time and dE is the size of the reconstructed

energy bins. Data analysis typically encompasses some number of data runs, n, and many

different effective areas are needed. In such cases the previous equation becomes a summation

with weighting factors of the time and area:

dN

dE
(E) =

∑n
i=0N

i
excess(E)∑n

i=0A
i
eff(E)T iobsdE

. (4.4)

4.2.3 Periodic Analysis

In addition to the standard analysis procedures of looking for a significant gamma-ray

signal and producing a SED for a given source, other features of a source may also be probed.

In the case of pulsars, the focus is on the detection of the periodic signal from the pulsed
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emission. The following sections describe the steps in searching for periodic emission from a

source.

Barycentering

The first step in searching for pulsed emission is applying a timing correction to account

for the movement of Earth though the solar system. This process is known as barycentering.

The time of arrival (TOA) of a photon at the VERITAS observatory is corrected to the

nearly inertial solar system center of mass, also known as the solar system barycenter (SSB).

The process begins by calculating the Barycentric Dynamical Time (TDB) which is a

linear scaling of Barycentric Coordinate Time (TCB) which is equivalent to the proper time

experienced by an inertial clock in the a coordinate system co-moving with the SSB. TDB

is defined as:

TDB = UTC + LS + 32.184 + 0.001658 sinM + 0.000014 sin (2M) (seconds) (4.5)

The quantities in the above equation are defined as follows:

� UTC : Coordinated Universal Time, the time standard used to tag the TOA of photons

at VERITAS by GPS clocks.

� LS : Leap Seconds, one second corrections applied to UTC at irregular intervals to

compensate for the slowing of Earth’s rotation. The scheduling of leap seconds is

handled by the International Earth Rotation and Reference Systems Service3.

3LS update announcements are made every six months an published in IERS ”Bulletin C” found at this
website https://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat
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� M : Earth’s Orbit’s Mean Anomaly, the ratio of the time since the last periapsis of

Earth’s orbit to the duration of the orbital period, times a factor of 2π.

M = 6.24008 + 0.01720197 (JD − 2451545) (radians) (4.6)

where JD is the UTC expressed as the number of elapsed days since noon in Greenwich,

London, January, 4713 BC.

After converting to TDB a time of flight correction must be applied to convert the photon

TOA at Earth to the TOA at the SSB. First a correction is added for the time of flight from

Earth’s barycenter to the SSB and then an additional, smaller, correction for the time of

flight from the observatory to Earth’s barycenter. To make the conversion, the path length

difference d of two photons (one arriving at the SSB from the pulsar and one arriving at

Earth’s barycenter) must be calculated: ∆tEC−SSB = d/c. The DE200 Planetary and Lunar

Ephemeris from Jet Propulsion Laboratory4 (Standish, 1982) is used to determine up Earth’s

position. The second correction, ∆tOb−EC takes a similar form.

The previously described corrections are performed using the TEMPO2 package5 (Edwards

et al., 2006; Hobbs et al., 2006) implemented within VEGAS. These packages are used in

the final stage of the VEGAS analysis pipeline. The final expression for the barycentered

TOA, tbary is:

tbary = UTC + LS + 32.184 + 0.001658 sinM

+ 0.000014 sin (2M) + ∆tEC−SSB + ∆tOb−EC (seconds)

(4.7)

4ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii
5http://www.atnf.csiro.au/research/pulsar/tempo2/
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Phase-folding

The next step in the pulsed analysis is phase-folding. Individual pulses from pulsars,

especially in the VHE regime, do not have a sufficiently strong signal so observed pulses

are folded, or averaged, by calculating the pulsar’s phase for each observed photon allowing

a light curve to be constructed from the data of many pulses. For a given pulsar the

instantaneous pulse frequency is f = 1/P and the instantaneous pulse phase, φ is defined

by dφ/dt = f . The pulse phase is measured in turns of 2π radians meaning 0 < φ < 1. In

the SSB frame, the pulsar’s rotational period is nearly constant so the phase, φ(t), can be

represented as a Taylor expansion:

φ(t) = φ0 +

[
f (t− t0) +

1

2
ḟ (t− t0)2 + ...

]
mod1 (4.8)

where φ0 is some arbitrary phase offset, t0 is some arbitrary reference epoch, and t is

the arrival time of the photon. For known pulsar timing solutions (often determined by

radio observations and referred to as the pulsar ephemerides) are often used to lookup the

measurement for f and ḟ . These ephemerides have a limited period of validity determined

by the accuracy of the timing solution and the stability of the pulsar’s motion. For the

analysis presented in this work on the Crab pulsar, timing solutions from the Jodrell Bank

Observatory6 (Lyne et al., 1993) were used in the phase-folding of data.

Statistical Analysis

Once the photon arrival times have been converted to phase values, the distribution

of phase values can be tested for evidence of pulsed emission. For a steady-state source,

the phase values will be evenly distributed. For a source with periodic emission, such as a

6http://www.jb.man.ac.uk/pulsar/crab.html

69



pulsar, the level of detected emission should increase during particular phases dependent on

the exact source being examined. While several statistical tests exist to probe the existence

of periodicity in a signal, this work uses two tests: an unbinned signal region test and the

H -test (de Jager et al., 1989).

The unbinned signal region test relies on prior knowledge of the pulse emission phase

regions within the light curve. For a known pulsar, signal and background regions can be

defined. For a number of signal events, Non, and a number of background events, Noff , the

significance of an excess signal can be calculated using the Li & Ma formula from Section

4.2.1. This test for periodicity is limited to testing phase regions of known pulsed emission.

The significance of any excess signal outside of the defined signal regions will not be tested

using this method.

The second method, the H -test employed is best suited for weak signals and requires

no prior knowledge of the pulse shape or location. The H -test is based upon a common

test for periodicity, the Z2
m-test (Buccheri et al., 1983). The Z2

m-test involves the sum of the

Fourier powers of the first m harmonics. This test, as with other tests, is limited to certain

kinds of periodic shapes. The H-test was developed to be a more powerful test for a range

of pulse shapes. The H-test is defined as:

H ≡ max
0→20

(
Z2
m − 4m+ 4

)
(4.9)

where

Z2
m =

2

N

m∑
k=1

 N∑
j=1

(cos kφj)
2 +

(
N∑
j=1

sin kφj

)2
 (4.10)

The probability of finding an H -test value H above some value h is given by (de Jager et al.,

1989):

P (H > h) ' (1 + 0.45h) exp (−0.398h) (4.11)
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The standard VERITAS analysis using the VEGAS analysis suite described in this

chapter has been used to further examine the one known VHE emitting pulsar, the Crab

pulsar. The specific details of the analysis of the Crab pulsar will be described in the following

chapter.
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Chapter 5

VERITAS Analysis of Crab Pulsar

Up to TeV Energies

5.1 VERITAS Data on the Crab

In 2011 VERITAS published the first detection of a pulsar, the Crab pulsar, in the

very high energy regime (VHE; E > 100 GeV) (VERITAS Collaboration et al., 2011). The

detection came as a result of the analysis of 107 hours of observations on the Crab pulsar

acquired between September 2007 and March 2011. Since 2011 the Crab Nebula has been

a regular target of observation by VERITAS and the dataset from the 2011 publication has

been expanded to ∼150 hours of quality-selected data as of June 2014. The analysis of the

full ∼150 hour data set is presented in this chapter.

5.2 MAGIC Observations

The newest analysis of the Crab pulsar has been motivated in part by recent observations

of the Crab from the MAGIC collaboration. MAGIC announced new results from its
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Figure 5.1: Phase-folded spectral energy distribution of the Crab pulsar for peaks P1 and P2
from MAGIC (closed circles) and Fermi -LAT (open circles). Dashed line shows power-law
with exponential cut-off fit to Fermi -LAT data. Solid line shows fit using a broken power-law
to Fermi -LAT and MAGIC data. Figure taken from (Ansoldi et al., 2016).

observations of the Crab at the Fermi Symposium in October 2014, showing evidence for

pulsed emission reaching TeV energies (full details can be seen in (Ansoldi et al., 2016)).

Results of the MAGIC analysis of ∼ 320 hours of good-quality data from February 2007

to April 2014 show pulsed emission up to 1.5 TeV (see Figure 5.1). The light curve, or

phaseogram, from the MAGIC observations is shown in Fig. 5.2. The results of this study

support the 2011 VERITAS observations of the Crab and provide further evidence that a

broken power-law fit to the SED is preferred to a power-law with an exponential cutoff. The

latter would be indicative of curvature radiation as the source of VHE emission; a spectrum

consistent with a broken power-law function motivates a new explanation of VHE pulsed

emission.
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Figure 5.2: Phase-folded light curve, or phaseogram, of the Crab pulsar from MAGIC
observations in the energy ranges 100 < E < 400 GeV (top) and E > 400 GeV (bottom).
The region used for background subtraction is shaded gray. The peak intervals are shown
highlighted in yellow. Figure taken from (Ansoldi et al., 2016).
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5.3 Data Selection

Since the original VERITAS results on the Crab in 2011, many more hours of observations

have been collected. ∼ 150 hours of observations are presented in this work. Much of the new

data has been collected since a camera upgrade to the VERITAS array in 2012. This upgrade

to the camera involved replacing the PMTs with higher quantum efficiency increasing the

sensitivity and lowering the energy threshold of VERITAS (D. B. Kieda for the VERITAS

Collaboration, 2013).

The full set of VERITAS observations of the Crab were pared down using a number of

quality selection cuts based on constraints in the: number of participating telescopes, weather

conditions, elevation angle of observations, and any abnormalities in trigger rates indicative

of hardware problems. A minimum of four telescope participation was required for all data

(i.e. any data with one or more telescopes not operational were excluded). The weather and

environmental conditions are monitored at the observatory site using three far infra-red (FIR)

cameras sensitive to atmospheric changes and capable of detecting overhead cloud cover. An

automatic weather grading is applied based on the FIR cameras and observers manually

assign a weather grade (A-D). To be used in this analysis weather must have been rated A

or B during the collection of data and only good periods with no cloud cover (as indicated

by the FIR cameras) are used in the analysis. For this analysis, only high elevation data

(with zenith angles < 35◦) are used to ensure a low trigger threshold. Different procedures

are employed to (off-source) data while maximizing the on-source exposure. To minimize

systematics or any artifacts in the time series, we only use data taken in the wobble mode

with an offset of 0.5 degree. Diagnostic plots of data are checked to ensure no anomalies

in the trigger rates during observations. A list of good data runs is given in Table A.1 in

Appendix A.
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Parameter Cut Value

DistanceUpper 0/1.43
NTubesMin 0/5
SizeLower 0/200 d.c.

MSL 1.3
MSW 1.1

ShowerHeight 7 km

θ2 0.01◦
2

Table 5.1: VERITAS Data Analysis Cuts

5.4 Cut Selection for Pulsed Analysis

Data quality selection cuts and event selection cuts (described in Chapter 4) are applied

to the data set. The cuts used for the analysis of the Crab pulsar are given in Table 5.1.

These cuts were determined by an optimization on the pulsed signal in the Crab phaseogram

originally performed as part of the 2011 VERITAS analysis of the Crab. Originally an

optimization strategy was employed based on analysis of the Crab Nebula spectrum due

to the uncertainty in the expected pulsed emission flux at E > 400 GeV. The original

strategy was to perform standard VERITAS analysis on the entire Crab data set using the

three standard sets of VERITAS cuts for soft, medium and hard spectrum sources. The

sensitivity of cuts to Crab flux levels at various energies would serve as an optimization to

set cuts, a priori, without biasing the analysis. Ultimately, this strategy was abandoned in

favor of optimization on an independent pulsed data set as the nebular flux is expected to

have a different spectral shape and, in fact, is a dominant source of background signal for

the pulsed signal. The analysis of the nebula is presented here in Fig 5.3 as a cross-check

on the data quality with the spectra from the soft, medium and hard cuts analyses. The

spectra are consistent in the separate analyses.
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Figure 5.3: Crab Nebula differential spectrum for 100 < E < 30000 GeV using the three
standard VERITAS source cuts. Soft-source cuts are shown in blue. Medium-source cuts
are shown in black. Hard -source cuts are shown in red. Each SED is fit using a power-law
function shown as a solid line. The pink dashed line is the power-law function that was fit
to HEGRA observations of the Crab Nebula and is shown for comparison (Aharonian et al.,
2004).

5.5 Crab Pulsar Light Curve

After applying data quality selection and application of event selection cuts to candidate

gamma-ray events, the arrival times of the remaining events are transformed to the solar

system barycenter using TEMPO2 as described in Chapter 4. The rotational phase of the

Crab is then calculated for each event using the monthly ephemeris for the Crab pulsar

published by the Jodrell Bank Observatory. After the phase-folding process is completed

the light curve, or phaseogram, is constructed for the full range of energies. as shown in

Figure 5.4.
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Figure 5.4: VERITAS phaseogram of the Crab pulsar plotted over two phase intervals for
all energies observed. Two pulses can be seen at phases 0.0 and 0.4 and are referred to as P1
and P2, respectively. The highlighted regions are the signal regions used in the significance
calculation for a pulsed signal. The signal regions were defined based on the previous 2011
VERITAS analysis of the Crab. The background region is indicated by black arrows. The
red, dashed line indicates the background level estimated from the background region.

The significance of the pulsed signal is determined using the H-Test on the unbinned

event times and the Li & Ma significance calculated from the excess number of counts

of gamma-ray-like events at main pulse and interpulse, P1 and P2, centered at phase 0.0

and 0.4 in Figure 5.4, respectively. The signal region for P1 and P2, determined from the

2011 VERITAS analysis of the Crab, is defined as the phase interval −0.1 to 0.1 (P1) and

0.38 to 0.41 (P2). The signal region is highlighted in Figure 5.4. The background region,

determined by the previous VERITAS analysis, is defined as the phase interval 0.43 to 0.94

and is indicated by black arrows in 5.4. The background region is used to estimate the

background contamination due to cosmic rays and the steady-state flux of the Crab Nebula.

An H-Test performed on the unbinned data gives a value of 57.3189. The probability of

an H-Test value of 57.3189 by random chance is 1.10327e − 10. Using the phase intervals,

for both P1 and P2, defined by the 2011 VERITAS analysis of the Crab, the statistical
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Figure 5.5: VERITAS integral phaseogram of Crab pulsar with an energy threshold of
E > 501 GeV. Signal region (highlighted) and background region (indicated by arrows)
are the same as Figure 5.4. The pulsed signal has a significance of 2.6σ as given by the Li
& Ma formula.

significance of the number of excess events given by the Li & Ma formula 4.2 is 8.8σ. The

growth of the significance from excess events can be seen in Figure 5.6.

Previous studies by VERITAS and MAGIC have already reported significant pulsed

emission between 100 GeV and 400 GeV. This work is particularly focused on finding evidence

for an extension of the pulsed emission spectrum and confirming the MAGIC collaboration’s

report of pulsed TeV emission. To that end, after initial analysis on the full energy range

is performed, an energy cut is applied and a phaseogram is constructed from gamma-ray

events with reconstructed energies E > 500 GeV. This phaseogram is shown in Figure 5.5.

The significance of the pulsed signal at E > 500 GeV is calculated in the same fashion as

previously described for the full energy range. The statistical significance of the number

of excess events within the signal region for P1 and P2 combined, as given by the Li &

Ma formula, is 2.6σ. Such a statistical significance is not sufficient to claim a VERITAS

detection above 500 GeV with ∼150 hours of observations.
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Figure 5.6: Growth of excess (left) and signifance (right) against cumulative photon events.

5.6 Crab Pulsar Spectrum

The differential energy spectrum of the pulsed Crab emission was reconstructed using

the excess in the signal regions for P1 and P2 combined. Table 5.2 shows the details of the

differential energy spectrum. The differential energy spectrum is shown in Figure 5.7 as well

as the result of a fit with a power law spectrum of the form

dN

dE
= N0

(
E

E0

)Γ

(5.1)

where the normalization energy E0 is set to 150 GeV. The best fit parameters, a flux

normalization N0 and spectral index Γ, are shown in Table 5.3 along with fit parameters from

MAGIC observations for comparison. The VERITAS spectrum is limited by statistics and

we are unable to reconstruct spectral points above 500 GeV. Due to statistical limitations

we are unable to confirm the MAGIC detection of pulsed emission from the Crab at TeV

energies.
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Elow − Ehigh dN/dE NON NOFF Significance

79-126 3.77e-07 358 314 2.3

126-200 1.95e-07 4175 3626 8.5

200-317 1.26e-08 3002 2770 4.1

316-501 6.03e-10 1736 1717 0.4

> 501 - 2780 1500 2.6

Table 5.2: Crab Pulsar Differential Energy Spectrum

Figure 5.7: The phase-folded differential energy spectrum of the Crab pulsar for P1 and P2
combined measured by VERITAS between 100 GeV and 500 GeV. The Crab pulsar spectrum
is well fit by a power law function (black line). The best-fit parameters are given in Table
5.3. The power law fit to the 2011 VERITAS observations is shown (dashed, blue) and the
2016 MAGIC observations are shown for P1 (dot-dashed, red) and P2 (dashed, green) for
comparison.
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E0 N0 Γ

(GeV)
(

TeV−1 m−2 s−1
)

×10−7

MAGIC P1 150 1.1± 0.3 −3.2± 0.4

MAGIC P2 150 2.0± 0.3 −2.9± 0.2

VERITAS (2011) P1+P2 150 4.2± 0.6stat −3.8± 0.5stat

VERITAS (this work) P1+P2 150 2.62± 0.35stat −3.1± 0.45stat

Table 5.3: Results of Spectral Fit to Power Law Function

5.7 Height of Pulsed Emission Site

As discussed in Chapter 2, there exists a relation between the energy of an observed

VHE photon from a pulsar and the minimum possible distance between the pulsar stellar

surface and the emission location. This relation comes as a consequence of the interaction

between photons and the strong magnetic fields of the magnetosphere leading to the absorption

of some photons due to pair creation. VHE photons must be emitted beyond a certain

distance to survive propagation through the magnetosphere to be observed. The restriction

on the emission height is given by Equation 2.30. The relevant parameters for the Crab

are: surface field strength B0 = 3.78 × 1012 G and spin period P = 33 ms (Manchester

et al., 2005). Using our results we find a minimum emission height of 12 Rs. This bound is

not as restrictive as the limits that can be set using the MAGIC observations, which give a

minimum emission height of 19.76 Rs for the highest energy point for P2 with an energy bin

range of 965− 1497 GeV and centered at 2914 GeV.
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Figure 5.8: Plot of the minimum emission height (i.e. minimum distance between the Crab
pulsar stellar surface and the emission location) of a VHE photon for a given energy. The
strong magnetic fields in the magnetosphere allow the absorption of VHE photons due to
pair creation. As a result of pair attenuation, photons observed at various energies must have
been emitted a minimum distance above the stellar surface to survive propagation through
the magnetosphere. The exact location of emission cannot be known but a bound may be
set on the emission height. For the Crab pulsar, the spectrum is reconstructed up to 500
GeV by the analysis in this chapter. This yields a minimum emission height of 12 Rs.

5.8 Results Summary and Discussion

With ∼150 hours of observation we extend the Crab pulsar spectrum to 500 GeV.

These results are in agreement with the MAGIC results up to 500 GeV. After ∼150 hours

of observation we are unable to confirm the MAGIC detection of pulsed emission up to ∼2

TeV. The spectral shape further supports that view that curvature radiation only cannot

explain the VHE emission. More data is needed to make definite conclusions about the

spectral shape beyond 500 GeV. Extending the spectrum to higher energies will allow better

understanding of the dominant emission mechanism(s) beyond the spectral break.

Our results further constrain the location of acceleration regions in the magnetosphere.

At energies above 500 GeV the minimum emission height above the stellar surface is 12

Rs. This limit pushes the possible location of the acceleration region(s) further out in the

magnetosphere.

83



VERITAS currently has plans to extend Crab observations up to 300 hours, which

will enable analysis and results with the same or better sensitivity than MAGIC. Currently

the Crab is still the only known VHE emitting pulsar. Adding to the VHE pulsar catalog

will improve the understanding of emission mechanisms and acceleration region locations.

VERITAS is currently analyzing archival data to search for pulsed emission from other

known gamma-ray emitting pulsars. The location of 19 known pulsars have been observed

by VERITAS. Each of these pulsars is a new candidate VHE source and most have not been

observed by other VHE instruments. Many of these observations were obtained when the

pulsar was in the field of view of another primary target. 11 of the locations have more than

20 hours of observations each. The top 10 pulsars, in terms of spin-down power divided by

distance squared, detected in the Northern Hemisphere by Fermi -LAT are contained in this

archival dataset (see Archer (2015)).
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Chapter 6

Effect of Geometry and Pair Opacity

on Light Curves

Observed pulsars exhibit a variety of features in their light curves (also referred to

as phaseograms). Many studies have been conducted in attempts to understand what

underlying physics is responsible for the variety of light curve shapes. This chapter discusses

the basic physics and geometry that is used in simulations of photons propagating through a

magnetosphere for a variety of physical scenarios. The simulations presented are intended to

illustrate the effects of the geometry of the emission region and photon-magnetic field pair

creation interactions. The methods and results are presented in detail in this chapter and

help motivate the study of more exotic physics that may occur in the extreme environment of

the pulsar magnetosphere. Chapter 7 will extend the discussion of the simulations described

here to include considerations of axion-like particle models.
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6.1 Simulation of Photon Propagation through Pulsar

Magnetospheres

6.1.1 Pulsar Magnetosphere and Geometry

Since the first discovery of pulsars in 1967, numerous efforts have been put forth to

provide a complete and accurate description of the magnetospheres of pulsars. The purpose

of this work is not to study the intricate details of a realistic magnetosphere, but to examine

physical processes within the magnetosphere and develop a simple model that can be used

to understand the basic features of pair opacity and (in Chapter 7) photon-axion conversion.

This work adopts a simple standard model for pulsars, treating the magnetic field geometry

to be given by the retarded potential vacuum dipole solution (Deutsch, 1955) and adopt the

formalism used in Michel and Li (1999):

Br =
2M

r3
(cos ξ cos θ + sin ξ sin θ [d1 cosψ + d2 sinψ])

Bθ =
M

r3
(cos ξ sin θ − sin ξ cos θ [(q1 + d3) cos 2θ + d3] sinψ)

Bφ =
M

r3
sin ξ (− [q2 cos 2θ + d4] cosψ + [q1 cos 2θ + d3] sinψ)

(6.1)

M is the magnetic dipole moment, ζ is the angle between the pulsar spin axis and the

line of sight to the observer. ξ is the inclination angle of the magnetic dipole axis, and Ω is

the angular velocity of the pulsar, ψ = φ−Ωt+ ρ− α, where ρ = rΩ/c and α = RsΩ/c and
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Figure 6.1: Schematic of the geometry used for pulsar simulations. The axis of rotation Ω̂
lies along the z-axis.

coefficients di, qi are:

d1 =
αρ+ 1

α2 + 1

d2 =
ρ− α
α2 + 1

d3 =
1 + αρ− ρ2

α2 + 1

d4 =
(ρ2 − 1)α + ρ

α2 + 1

q1 =
3ρ (6α3 − α5) + (3− ρ2) (6α2 − 3α4)

α6 − 3α4 + 36

q2 =
(3− ρ2) (α5 − 6α3) + 3ρ (6α2 − 3α4)

α6 − 3α4 + 36

(6.2)

In the region near the stellar surface special relativistic effects are negligible and the

near-field approximation (ρ ∼ α) for the magnetic field surrounding the pulsar simplifies to:

Br =
M

r3
(2 cos ξ cos θ + 2 sin ξ sin θ cos (φ− Ωt))

Bθ =
M

r3
(cos ξ sin θ − sin ξ cos θ cos (φ− Ωt))

Bφ =
M

r3
sin ξ sin (φ− Ωt)

(6.3)

87



As the light cylinder, Rlc, of the magnetosphere is approached the corotation velocity

approaches the speed of light and special relativistic effects become prominent. The far-field

approximation (ρ� 1) for the magnetic field surrounding the pulsar simplifies to:

Br =
2M

r2

Ω

c
sin ξ sin θ sinψ

Bθ =
M

r

Ω2

c2
sin ξ cos θ cosψ

Bφ = −M
r

Ω2

c2
sin ξ sinψ

(6.4)

The full geometry of the model used is depicted in Fig. 6.1. The pulsar is centered at

the origin and has a radius of 10 km = Rs. The rotation axis Ω̂ lies along the z−axis. The

angle of inclination of the magnetic moment ξ is measured from the z−axis. The phase φ is

defined to be zero when M̂ is parallel to the +x̂ direction.

6.1.2 Photon Emission

An array of n photons is generated for the simulation with some initial location xi

in the magnetosphere and some energy E. Because the precise nature of VHE emission

from pulsars is not well-understood, few detailed assumptions are made about the emission

mechanism(s) producing the photons for the simulation. We do assume that VHE photons

are emitted through some relativistic process (e.g. curvature radiation or inverse Compton

scattering), and thus photons are subject to relativistic beaming. As discussed in Chapter

2, the various possible VHE emission mechanisms are limited to occurring only within a

few defined theoretical gap regions within the pulsar magnetosphere. As such, the photons

generated have emission locations randomly distributed throughout the slot gap (SG) and

outer gap (OG) regions, each considered as a separate case in the simulation studies.
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The SG region (depicted in Figure 6.3) begins at the polar cap of the neutron star.

The region then extends to higher altitudes in the magnetosphere along the outside of the

last closed field line, sin2 θ/r = 1/Rlc for an aligned dipole, and has some thickness ε. This

emission region extends all the way out to the light cylinder Rlc. In many SG models the

thickness of the SG region becomes smaller at higher altitudes. This condition is relaxed for

our simulations and the thickness of the region matches that of the OG region.

The OG region is bounded at low altitudes on the inside by the null surface, where

Ω·B = 0 and on the outside by the light cylinder. The region extends out to the light cylinder

along the outside of the last closed field line with some thickness that is limited physically by

pair creation in the region. In this simulation the thickness is set to an arbitrary value. The

OG region used is depicted in Fig. 6.2. To ensure the simulation code is working properly

the initial positions of photons generated are plotted and shown in Fig. 6.2 for comparison

and the x, y, z position distributions are shown in Fig. 6.4.

The emitted phase angle value φi is given based on the geometric emission location

and φ is the azimuthal angle measured in the xy-plane from the x−axis to the +y−axis

with φ defined to be along the +x̂ direction. The observer lies in the x − z plane with an

azimuthal angle φ = 0. The phase angle is given in units of 2π such that one full rotation

of the neutron star goes from φ = 0 to φ = 1. Given the periodic nature of pulsars, one

might naively expect a light curve to be symmetric as is the one shown in the top of Fig.

6.5(a). Typically observed light curves are not perfectly symmetric and this is due, in part,

to the difference in times of flight required for photons emitted at different locations in the

magnetosphere. This difference in time of flight for photons is accounted for by subtracting

a phase-correction factor φc = −~r · k̂/Rlc from the photons emission phase location φi to give

the observed phase φ.

φ = −φi − ~r · k̂/Rlc = −φi − φc (6.5)
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Figure 6.2: Outer gap region used for simulation shown in orange shaded region with the
boundaries of the light cylinder shown. Photons are given randomly seeded initial positions
throughout the OG region.

Figure 6.3: Slot gap region used for simulation shown in orange shaded region with the
boundaries of the light cylinder shown. Photons are given randomly seeded initial positions
throughout the SG region.
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(a) Distributions of photon emission locations
separated into x, y, z coordinates.

(b) Plot of photon positions. Each photon is
represented by an orange point.

Figure 6.4: Example of the distributions of photon emission locations for one simulation
with ξ = π/4.

91



(a) (b)

Figure 6.5: (a) shows the light curves from one simulation with ξ = π/3 and ζ = π/4 for
both the SG model (black) and the OG model (blue). The top plot is the light curve before
any time of flight corrections are applied to the emission phase φi. The bottom plot in (a)
is the light curve for the same set of propagated photons with phase-corrections φc applied.
(b) is the distribution of values for phase-corrections applied to the propagated photons.

where ~k is the photon wave vector and we consider photons where k̂ points to the observer.

Fig. 6.5(b) shows the distribution of phase-correction factors applied to one simulation

and the bottom plot in Fig. 6.5(a) shows the phase-corrected light curve.

While the emission mechanisms and emission regions are not fully understood, the

energies of photons produced by pulsars can be defined using functions fit to observational

data, with the caveat that the already observed spectrum includes the effects of pair absorption.

For emission from pulsars in the 10 GeV to 300 GeV range, the spectral energy distribution

is well-fit using a smoothly-broken power law of the form:

F (E) = A

(
E

E0

)α [
1 +

(
E

E0

)α−β]−1

(6.6)
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using the parameters A = 1.45, E0 = 4, α = −1.96, and β = −3.52 (VERITAS Collaboration

et al., 2011). Photon energies are assigned using this distribution function for the range

100 GeV to 10 TeV. Frequency shifts due to relativistic effects are not considered. The

distribution of energies for one simulation of 100000 photons is shown in Fig. 6.6. VHE

Figure 6.6: Distribution of photon energies used in simulations. Energies range from 100
GeV to 10 TeV. Photon energies are generated using a smoothly-broken power law function
and parameters that have been fit to Fermi-LAT and VERITAS observations of the Crab
Pulsar from VERITAS Collaboration et al. (2011).

photons in pulsar magnetospheres are not isotropically emitted. Due to the relativistic nature

of the various particle acceleration processes that lead to the emission of VHE photons, these

emitted photons are subject to relativistic beaming. This puts a constraint on the regions

from which photons may reach an observer for various inclination angles ξ and observer

angles ζ. It is assumed that emitted photons are beamed forward within a conical region

centered along the magnetic field line at the photon’s emission location. If this conical

region overlaps with the unit vector to the observer then a photon may be observed. The

precise physical processes that determine the opening angle (e.g. turbulent variations in the

field about the mean dipole field) are unknown; we therefore treat the opening angle as a
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free parameter of the model to be determined empirically by matching the observed light

curves. For the purposes of this study and partially due to limits of computational power, a

wide beaming angle cut is applied, much larger than the naive 1/γ angle about the B−field

direction.

6.2 Results

The simulation of very high energy photons propagating through a model pulsar

magnetosphere is run for a variety of possible physical scenarios. As has been shown

extensively in the literature (Ruderman and Sutherland, 1975; Romani, 1996; Dyks et al.,

2004; Muslimov and Harding, 2003) the assumed location of particle acceleration resulting in

VHE emission of photons has an effect on the observed light curve. The inclination angle of

the magnetic pole and the observer angle also have clear affects on the observed light curves.

VHE photons do not freely travel through strong magnetic fields as discussed in Chapter 2

and the inclusion of pair production physics restricts the regions from which VHE photons

may escape the magnetosphere. The following sections will show the results of the various

basic geometric and physical influences on the observed pulsar light curves.

6.2.1 Effects of Geometric Considerations on Simulated Light Curves

Two separate gap models are assumed for the purposes of this study. The first model

considered is the SG model which is described in detail in Chapter 2. Photon emission is

limited to the SG region as described.

The OG model is applied to the simulation to define the possible photon emission

regions. Crab pulsar-like parameters are used for spin period and magnetic field strength
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Parameter Value(s)

M/R3
s (G) 1012

P (s) 0.033

Rs (km) 10

ξ (rad) π/12, π/6, π/4, π/3, 5π/12

ζ (rad) π/12, π/6, π/4, π/3, 5π/12, π/2

Table 6.1: Pulsar Parameters Used in Simulations

and given in Table 6.1. A range of inclination angles ξ and observer angles ζ are used. For

a given set of parameters, a set of n photons are generated randomly throughout the OG

region. The angle between the magnetic field line along which a photon is generated and ζ

is calculated. A selection cut is applied to this angle to account for beaming of the emission.

If the angle is less than some value ϑ then the photon is “observed”. No additional physics

are considered at this time.

For both of these studies we use the spectrum assumed in Section 6.1.2 and plot results

obtained by summing all photons above 100 GeV to simulate what would be observed by a

VHE gamma-ray observatory like VERITAS. The results shown in Fig. 6.7 are light curves

of “observed” photons only considering different geometries of gap regions.

6.2.2 Effect of Pair Creation on Simulated Light Curves

VHE photons traveling through a strong magnetic field interact with the field and

may produce e± pairs, as discussed in Section 2.4.4. The attenuation of the VHE signal by

photon-magnetic field interactions is considerable and therefore must be included to properly

simulate photon propagation through the magnetosphere. The probability, per unit time, of

producing an electron-positron pair by a photon with momentum ~k moving in a magnetic
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(a) Lightcurves using SG Model geometry (b) Lightcurves using OG Model geometry

Figure 6.7: Lightcurves from simulations for SG and OG models with inclination angle
ξ = 5π/12 and a range of viewing angles ζ.
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(a) Lightcurves using SG Model geometry (b) Lightcurves using OG Model geometry

Figure 6.8: Lightcurves from simulations for SG and OG models with inclination angle
ξ = π/3 and a range of viewing angles ζ.
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field ~B is given by the expression:

W
(
~k
)

=
33/2

29/2

α~c

λ̄
b0| sin βph| exp

(
− 8

3kb0| sin βph|

)
Θ [k| sin βph| − k⊥0] (6.7)

where α~ is the fine-structure constant, λ̄ is the Compton wavelength, b0 = B/B~, Θ(x) is a

step-function and k⊥0 is the minimal value of the photon momentum component orthogonal

to ~B for pair production to be possible (Beskin et al., 1993).

The optical depth for pair creation along some path out to a distance l, is obtained by

integrating Eq. 6.7 over the photon propagation path s:

τ (l) =

∫ l

0

W (~k)ds (6.8)

The probability that a photon will survive along a given trajectory is exp {−τ (l)}. The

mean free path L for a photon is defined by l = L such that τ (L) = 1. This function for

photon survival is highly dependent on the photon energy and the strength of the magnetic

field component perpendicular to the photon propagation direction. Fig. 6.9 depicts the

mean free path for photons at different energies (100 GeV, 1 TeV and 10 TeV) at different

locations in the magnetosphere. The mean free path was calculated assuming the inclination

angle ξ = π/4 and photons travel along the +x̂-direction. The plot shows that any photons

in the VHE range will easily pair produce if the photons are emitted near the stellar surface.

The geometry used for the pulsar magnetosphere is shown in Fig. 6.1 and the geometry

used for the calculation of the probability of pair production for photons is shown in Fig.

6.10. As with the simulations described in Section 6.2.1, photons are generated randomly

throughout an emission region defined by two different theoretical models, the SG model

and the OG model. The photon is assumed to propagate in a direction tangential to the

magnetic field line at the emission location due to relativistic beaming, this defines the unit
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Figure 6.9: Plot of the mean free path of photons at various energies (100 GeV [black], 1
TeV [red] and 10 TeV [blue]) at any point from the stellar surface to the light cylinder.
The mean free path was calculated for a pulsar with inclination angle ξ = π/4 and photons
traveling along the +x̂-direction. The mean free path changes as a function of distance from
the pulsar due to the falling magnetic field strength. The x, y values are given in units of
pulsar radii (Rs). The dashed gray line is the remaining distance to the light cylinder from a
given x−coordinate. Once the mean free path value exceeds the distance to the light cylinder
photons are expected to survive propagation. From this plot the one can get an idea of the
distance from the stellar surface that higher energy photons must be emitted to be observed.

momentum vector k̂. Due to uncertainty in the exact nature of the emission and the field

geometry a loose restriction is placed on the required path for a photon to be observed. This

comes in the form of a cut made on the angle ϑ between k̂ and the direction to the observer.

If ϑ is below the cut threshold the photon will be “observed” if it also survives propagation

through the magnetosphere.

Photons that survive the ϑ-cut are then propagated through the magnetosphere. The

photon follows a straight path in the observer frame (no general relativistic effects are

considered). The path length is the distance between the photon emission point r0 and

the location at the light cylinder Rlc reached along k̂. This path is used to calculate τ (l) for

the photon. The probability of survival is then calculated using this value of τ . Light curves

are created for the distribution of surviving photons and can be seen in Fig. 6.11 and 6.12.

For comparison, light curves are also produced for the full initial distribution of photons
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Figure 6.10: Schematic of the geometry used for calculation of pair production opacity. The
emission point (red point) is identified in the diagram. The photon momentum vector ~k

showing the direction of photon propagation is a dashed red arrow. Initially ~k is tangential
to the field line but as the the photon propagates the angle βph between ~k and ~B increases.
~B is shown by a dashed gray arrow at one point along the photon’s path. The line of sight
to the observer is shown by the solid black arrow. An angle cut is applied for the angle ϑ to
determine if a photon will be observed. The dipole magnetic field lines are shown as solid
black lines.

assuming all survive showing the difference in peak strength and peak phase location when

pair production is considered. The full set of light curves produced for all simulated ξ, ζ can

be found in Appendix B.

Past studies on pulsar geometry and the influence of pair creation have put constraints

on the possible theoretical emission regions for VHE photons. To demonstrate the effect

of pair creation on the survival of VHE photons emitted near the stellar surface, Fig.

6.13(a) shows radial distance from the stellar surface to the emission locations of all photons

simulated for one set of ξ, ζ values and Fig. 6.13 shows the energy distribution of emitted

photons. The black distribution shows the full distribution of emitted photons. The blue

distribution represents the distribution of photons that survive propagation through the
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure 6.11: Light curves from simulations for SG and OG models with inclination angle
ξ = 5π/12, a range of viewing angles ζ and an energy threshold E > 600 GeV. The light
curves resulting only from geometric considerations with no pair absorption are depicted in
black for both SG and OG models. Some photons that are capable of being observed due
to geometry are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on VHE gamma rays
are shown in blue. Light curves for some viewing angles, ζ, are more strongly affected than
others. For viewing angles of similar value to the magnetic inclination angle the light curves
are less affected as seen for both SG and OG models.
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure 6.12: Light curves from simulations for SG and OG models with inclination angle
ξ = π/3, a range of viewing angles ζ and an energy threshold E > 600 GeV. The light
curves resulting only from geometric considerations with no pair absorption are depicted in
black for both SG and OG models. Some photons that are capable of being observed due
to geometry are not observed due to pair attenuation in the strong magnetic fields of the
magnetosphere. The light curves showing the effect of pair attenuation on VHE gamma rays
are shown in blue. Light curves for some viewing angles, ζ, are more strongly affected than
others. For viewing angles of similar value to the magnetic inclination angle the light curves
are less affected as seen for both SG and OG models.
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(a) Distribution of radial distance to
emission location.

(b) Energy distribution of simulated
photons.

Figure 6.13: Results of photon propagation with and without pair production. The
distribution of radial distances to the emission location of photons is shown in (a). The energy
distribution of simulated photons is shown in (b). The full distributions of emitted photons
is shown in black with gray shading. The blue distributions shows “observed” photons. The
red distribution shows photons that underwent pair production during propagation.

magnetosphere and are “observed”. The red distribution is the distribution of photons that

pair produce and do not survive propagation through the magnetosphere. Fig. 6.14 is a

3D plot depicting the emission location of simulated photons. The black points represent

the locations of photons that are “observed”, while the red points represent the emission

location of photons that survive the ϑ-cut but have an optical depth τ ≥ 1 and therefore do

not survive. The size of the points are weighted by the energy of the photon emitted. From

Fig. 6.14 one can easily see that some higher energy photons pair produce even when emitted

in regions where most lower photons survive propagation. The largest non-“observed” photon

in Fig. 6.14 has an energy of ∼ 4 TeV.
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Figure 6.14: 3D visualization of the emission locations of simulated photons in the
magnetosphere for SG (top) and OG (bottom) models where the inclination angle ξ = π/3.
“Observed” photons are shown in white and pair-attenuated photons are depicted in red.
The size of the points are weighted by the energy of the photon emitted. The light cylinder
is shown as a nearly transparent cylinder. The pulsar is shown in black with an exaggerated
size. The pulsar spin direction Ω̂ is along the z−axis. The line of sight to the observer is
depicted by an arrow (ζ = π/12).

104



Chapter 7

Axion-like Particle Oscillations in

Pulsar Magnetospheres

Many avenues haven been pursued in the search for axions and axion-like particles,

ranging from the terrestrial to the astrophysical and covering a large range of the available

parameter space. In this chapter we present a new, the previously unexplored avenue of

ALP-photon coupling in magnetosphere of pulsars. Pulsars provide an opportunity to probe

new regions of the ALP mass-coupling constant parameter space through investigating

the propagation of simulated VHE gamma rays in a model pulsar magnetosphere. The

previous chapter discussed the effects of pair production of VHE gamma rays on the observed

periodic signal from pulsars. Fewer photons at higher energies survive propagation and are

more limited in the region from which they may be emitted and remain observable. This

chapter discusses the physical implications of the existence of ALPs and the role ALP-photon

coupling plays in allowing VHE photons to propagate through pulsar magnetospheres with

a higher rate of survival.
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7.1 Pair-Opacity of Pulsar Magnetospheres

Chapter 6 discusses a Monte Carlo simulation of VHE photon emission and propagation

through a pulsar magnetosphere for a variety of geometries. The results of this study

illustrate that in VHE regime, pulsar magnetospheres quickly become opaque to photons

at higher energies and as the emission location nears the stellar surface. As ground-based

gamma-ray observatories report increasing observed energies of the pulsed emission from

pulsars, the opaqueness of the magnetosphere becomes an increasingly limiting constraint

on potential emission regions.

Figures 7.1 and 7.2 illustrate the fraction of geometrically observable photons over a

range of energies and emission locations that undergo pair production.Both figures show this

fraction for simulations with pulsar magnetic inclination angles of π/4 and π/3, as well as a

variety of viewing angles ζ. The bottom of Figure 7.1 shows a clear trend that as the photon

energy increases a growing fraction of photons are attenuated and for many viewing angles

nearly all photons above 300 GeV over the entire geometrically allowed gap region.

The opacity of the magnetosphere is dependent on the emission location since at smaller

altitudes, near the stellar surface, the magnitude of the magnetic field is greater and the

propagation distance through the magnetosphere is greater, both quantities increasing the

probability of attenuation. Figure 7.2 illustrates the fraction of geometrically observable

photons over a range of emission locations (measured as a radial distance from the stellar

surface) that undergo pair production thereby preventing observation of these photons.

Figure 7.2 shows this fraction for simulations with pulsar magnetic inclination angles of

π/4 and π/3, as well as a variety of viewing angles ζ. For both inclination angles shown, all

photons emitted (at any energy) between the stellar surface out to an altitude of 30 Rs are

attenuated. A significant fraction are attenuated at higher altitudes, but the general trend
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Figure 7.1: Plot of the fraction of simulated, emitted VHE photons that undergo pair
production while propagating through the pulsar magnetosphere for ξ = π/4 (top), ξ = π/4
(bottom) and the range of simulated ζ values over the range of energies used. The plots
demonstrate the range in effects of pair attenuation on the propagation of photons. For
ξ = π/4 most photons do not pair produce until high energies are reached. For ξ = π/3
between 0− 20% of photons in the 600 GeV energy bin are attenuated (for ζ ≤ π/3) while
at higher energies, for some viewing angles, all photons are attenuated.
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Figure 7.2: Plot of the fraction of simulated, emitted VHE photons that undergo pair
production while propagating through the pulsar magnetosphere for ξ = π/4 (top), ξ = π/4
(bottom) and the range of simulated ζ values over the range of emission location radial
distances. The plots demonstrate the range in effects of pair attenuation on the propagation
of photons.
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Figure 7.3: The mean free path of a 100 GeV photon emitted at a distance 6Rs (in the
x̂−direction) above the stellar surface is shown for the full range of phase values. The mean
free path is calculated for several possible inclination angles to illustrate the range of phase
dependence for all simulated inclination angles. The photons are assumed to propagate in
the +x̂−direction. The distance to the light cylinder Rlc is shown (red). Photons with mean
free path values less than this distance imply (gray region) the photons will be attenuated.
Photons with mean free path values greater than Rlc will be observed.

is not clear beyond 50 Rs as a result of limited statistics and the energy dependence of pair

production that is not fully captured in this figure.

The probability of pair production is not wholly determined by the magnitude of the

magnetic field, but rather the magnitude of the perpendicular component of the magnetic

field. For the misaligned rotating dipole field of a pulsar this implies that a photon emitted

at some location and with some energy will have different probabilities of undergoing pair

production depending on the rotational phase at the time of emission. In certain cases this

can be the difference between the survival or attenuation of a photon. Figure 7.3 shows the

mean free path (given by Equation 7.1) for a 100 GeV photon emitted at 6 Rs for various

pulsar inclination angles as a function of rotational phase. Figure 7.3 demonstrates that for

some phases the simulated photon will be attenuated while for other phases the photon will

be observed.
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7.2 Distance Scales

As an initial step to gauge the efficacy of using pulsar magnetospheres to search

for signatures of ALPs the relevant distance scales of pair production and ALP-photon

oscillations are considered. If one physical process dominates for the energy range considered

it is unlikely to find an observable effect on the propagation of VHE photons. The two process

need to be competitive for similar distance scales to expect an appreciable effect on the light

curves and/or energy spectrum of pulsars. For pair production the mean free path, L, derived

from Equation 6.7 serves as the relevant distance scale. This mean free path for the case of

a photon with momentum k moving in a magnetic field with a constant curvature radius ρc

is given by:

L =
8ρc
3kb0

(
ln

[
α~ρc

2
√

6λ̄k2b0

]
− 3 ln

[
1

2
ln

(
α~ρc

2
√

6λ̄k2b0

)])
(7.1)

where b0 is B/B~, k is the momentum of the gamma ray and the other quantities are defined

in Chapter 6.

The mean free path for photons emitted on the x−axis, traveling in the +x̂−direction

with an energy of 100 GeV, 1 TeV and 10 TeV were calculated and plotted shown in Figure

6.9. The range of energies considered in our simulations and the associated range of mean

free paths are shown again in Figure 7.4 in blue to compare directly with the relevant

distance scale for ALP-photon oscillations (to be described later in this chapter). From the

formula for the probability of conversion of an ALP to a photon given by 7.6 it is clear the

probability of conversion is maximal at some path distance d = dmax where dmax = π/ (Bg)

for a given magnetic field strength and coupling constant. This quantity dmax becomes the

relevant length scale to consider and is calculated using ALP-photon coupling constant values

g = 10−7 GeV−1 to g = 10−11 GeV−1 over the range of values of B encountered throughout

the magnetosphere. Figure 7.4 shows that there is significant overlap in the distance scales

for pair production and ALP-photon oscillations throughout the entire magnetosphere. The
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Figure 7.4: Comparison of relevant distance scales for pair-production and ALP oscillation
probability for a pulsar with ξ = π/4, ζ = π/2. The horizontal axis is the emission location of
photons in units of stellar radii (Rs) and goes from the stellar surface out to the light cylinder
radius. The vertical axis is the distance scale for the two considered physical processes in
units of stellar radii (Rs). The mean free path for the range of energies considered (100
GeV to 10 TeV) is bounded by blue lines and shaded. The distance scale that maximizes
ALP oscillation probability (d = π/ (Bg) for the relevant range of coupling constant, g,
(10−11 to 10−7) is bounded by black lines and hashed. The distance from the radial position
to the light cylinder Rlc is shown in red to indicate what distance scales are of interest for
pulsar magnetospheres. From this figure it can be seen that there is a range of photon
energies and coupling constants for which the distance scale relevant to pair production and
ALP oscillation probability are comparable. This range lies naturally in the VHE regime for
photon energies.

figure also demonstrates that the distance scales for the two physical process are, for some

photon emission locations, less than the distance to the light cylinder which is important

for either process to take place while a photon propagates through the magnetosphere. At

distant regions of the magnetosphere approaching the light cylinder the mean free path of

pair production is sufficiently large for all considered energies that photons are expected to

propagate without pair producing. Likewise the distance scale for ALP-photon oscillations

increases to large enough values that no oscillation is expected beyond a certain radial

distance.
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7.3 ALP-Photon Mixing in Pulsar Magnetospheres

As discussed in Chapter 3, axions and ALPs are predicted to couple to photons in the

presence of a magnetic field. The production of axions by high-energy photons is referred

to as the Primakoff effect. The inverse process of producing high-energy photons from the

decay of axions in the presence of a magnetic field is aptly named, the inverse Primakoff

effect. Figure 7.5 shows the Feynman diagrams for both processes. In a plasma, the photon

acquires an effective mass, and one can consider these Primakoff processes to be analogous

to the neutrino mixing problem as pointed out by Raffelt (1996). The Primakoff effects

shows up as off-diagonal elements in the mass matrix for a considered photon-ALP system.

Consideration of the propagation of a monochromatic, photon/ALP beam of energy Eγ

has been shown to take the form of a three-state nonrelativistic quantum system where

there are two photon-polarization states and one ALP state (de Angelis et al., 2011). For

propagation of VHE photons in a pulsar, the process of pair production must be considered

as well. This physical process comes in the form of an absorption term in the mixing

matrix for ALP-photon mixing. The following sections will discuss ALP-photon mixing first

without consideration of pair production and then including the absorption term from pair

production. The following sections make use of natural units with ~ = c = kB = 1 unless

explicitly stated otherwise.

7.3.1 Mixing without Pair Production

For the general case of a monochromatic, unpolarized photon beam propagating though

a magnetic field, ~B, in which ~B is misaligned from the ẑ−axis by an angle ψ, ALP-photon

conversion can be described by a Schrödinger-like equation of motion7 (Raffelt and Stodolsky,

7This follows by starting with the Dirac or Klein-Gordon equation then making the approximation that
∂2
t + k2 ≈ 2k (−i∂t + k) if ωi ≈ k � mi.
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(a) (b)

Figure 7.5: Feynman diagrams of the Primakoff effect (a) and the inverse Primakoff effect
(b). Axions and ALPs are coupled to photons and in the presence of an external magnetic
field, an ALP may convert into a photon. This interaction is key for many searches for ALPs
including the work presented in this chapter.

1988): (
i
d

dy
+ E +M

)
Ψ(y) = 0. (7.2)

where the mixing matrix M = M2/(2k) and M2 is the mass matrix.

Ψ(y) =


Ax(y)

Az(y)

a(y)

 (7.3)

where Ax(y) and Az(y) are the amplitudes of photon polarization along the x−axis and

z−axis, respectively and a(y) is the ALP amplitude. The mixing matrix M can be written

as

M =


∆pl 0 ∆aγ sinψ

0 ∆pl ∆aγ cosψ

∆aγ sinψ ∆aγ cosψ ∆a

 (7.4)

where ∆pl = −ω2
pl/ (2Eγ), ∆aγ ≡ Bg/2, and ∆a = −m2

a/ (2Eγ). The ∆pl term arises from

properties of the medium producing an effective photon mass.

The probability of ALP-photon oscillation can be determined in an analogous fashion

to neutrino oscillations. For the simplified case where ψ = 0 the probability of ALP-photon
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oscillation after propagation over a distance d can be written in the compact form

Paγ = sin2 2ϑ sin2

[
∆oscd

2

]
(7.5)

where ∆osc =
√

(∆pl −∆a)
2 + 4∆2

aγ and ϑ is the ALP-photon mixing angle that diagonalizes

the mixing matrix tan 2ϑ = 2∆aγ/ (∆pl −∆a). Equation 7.5 can be simplified to

Paγ =
1

1 + (Ecrit/Eγ)
2 sin2

Bdgaγ
2

√
1 +

(
Ecrit

Eγ

)2
 (7.6)

where Ecrit is the energy threshold above which oscillation probability is maximal and

independent of Eγ.

Ecrit (GeV) ≡ 5

2

m2
µeV

BGg11

(7.7)

This regime where ∆aγ � ∆pl−∆a is referred to as the strong-mixing regime. The subindices

indicate the following dimensionless quantities: mµeV = m/µeV where m2 ≡ |m2
a−ω2

pl|, g11 =

gaγ/10−11 GeV−1, and BG = B/Gauss. The plasma frequency is ωpl =
√

4παne/me = 0.37×

10−4µeV
√
ne/cm−3 and plays the role of mass in the dispersion relationship for radiation

propagating in a polarizeable medium. ne for pulsars is taken to be the Goldreich-Julian

density nGJ = |ρGJ | /e, though this likely underestimates the particle density in some regions,

and overestimates the density in the acceleration regions8 allowing axions to be efficiently

produced and to escape before regenerating gamma rays. The particle density is then nGJ ∼

1012 cm−3 near the stellar surface and drops to nGJ ∼ 105 cm−3 near the light cylinder. From

plasma frequency and Equation 7.6, the effective ALP mass will not be less than ∼ 10µeV if

ALP-photon oscillations are to occur near the stellar surface and the effective ALP mass will

not be less than ∼ 0.01µeV if ALP-photon oscillations are to occur near the light cylinder.

8This detail could play a roll if the density crosses a value yielding an enhancement due to resonant
conversion
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Figure 7.6: Probability of photon-ALP oscillation at locations through a pulsar
magnetosphere calculated using Equation 7.6 where ma = 10−4 eV, d = L. Paγ is shown for
Eγ = 100 GeV (top), Eγ = 1 TeV (center) and Eγ = 10 TeV (bottom) and various values of
g. The x−axis gives the emission location of the considered photon, d is measured from this
distance. Not all values of g are shown for each energy due to the rapid oscillations of the
function that obscure the graph. For each considered energy, smaller values of g give lower
frequencies of oscillation for the probability function. For any values of g, Eγ the probability
of oscillation never exceeds 0.5.
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Figure 7.7: ALP parameter space relevant to pulsar magnetospheres where we fix Ecrit = 10
GeV to allow for strong mixing to occur in the VHE regime. The effective axion mass is
limited, in part, by the particle density, nGJ , in the magnetosphere. The coupling constant
range is limited to values where ALP-photon oscillation distance scales are comparable to
the pair-attenuation mean free path of VHE photons (as seen in Figure 7.4). The left and
right edges of the parameter space are determined by the magnitude of the magnetic field
at the stellar surface (right) and the light cylinder (left).

The parameter space considered in this work consists of values for g,m such that VHE

photons are within the strong mixing regime. Figure 7.7 shows the relevant parameter space,

given by Equation 7.7, for gaγ and m given the range ~B−field magnitudes encountered in a

pulsar magnetosphere and with critical energy threshold set to 10 GeV, allowing the entire

VHE regime to be in the strong ALP-photon mixing regime. The range of masses considered

comes from limitations due to the plasma frequency of the magnetosphere.

The probability of ALP-photon oscillation in a pulsar magnetosphere is calculated and

shown in Figure 7.6 using Equation 7.6 with the ALP mass fixed at ma = 10−4 eV and the

path distance d = L where L is the mean free path for pair creation for a VHE photon with

energy Eγ at a distance r from the star (Equation 7.1). The path distance in the mixing

equation is set to the mean free path of a VHE photon to illustrate regions where one expects
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measurable effects from the interplay of these two processes as will be discussed in Section

7.2.

Figure 7.6 shows that Paγ varies greatly depending on the value of the coupling constant,

the photon energy and the initial location of the photon. For no considered parameters does

the of Paγ exceed 0.5. The sensitivity of Paγ to the value of the coupling constant can be seen

clearly for Eγ = 100 GeV where a value g = 10−11 GeV−1 gives a probability of oscillation

< 0.1 for any location in the magnetosphere. For g = 10−10 GeV−1 the probability of

oscillation is > 0.3 for a large fraction of the pulsar magnetosphere and for g = 10−9 GeV−1

the probability of oscillation oscillates between 0.0 and 0.5 depending on the location of

emission.

7.3.2 Mixing with Pair Production

The attenuation of VHE photons in pulsar magnetospheres due to pair production is

understood to play a large role in the observed light curves of pulsars. Due to the strength

of the magnetic field and the very high energy of photons considered in this work, pair

production can not be excluded when formulating the mixing matrix. The addition of pair

production effects to the ALP-photon mixing calculation comes in the form of an imaginary

absorption term that is added to the plasma term of the mixing matrix M so that ∆pl →

∆pl + i/(2L), where L is the mean free path of pair production. The mixing matrix then

takes the form

M =


∆pl + i

2L
+ ∆QED 0 ∆aγ sinψ

0 ∆pl + i
2L

+ ∆QED ∆aγ cosψ

∆aγ sinψ ∆aγ cosψ ∆a

 (7.8)
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Here we have an included the additional term ∆QED which comes from QED vacuum

polarization. Typically for ALP-photon mixing problems this term can be ignored due

to the weak magnetic fields considered in other astrophysical or experimental environments.

For the case of a pulsar magnetosphere this term is non-negligible in comparison to the

other mixing matrix terms. Unfortunately, there is no complete theory for the complex

refactive index that combines the effects of vacuum polarization and pair production. The

most careful studies of QED effects (to two loops) reproduce the famous result of Euler and

Heisenberg (Heisenberg and Euler, 1936) or more recently by (Adler, 1971), but allow one

to relax the assumption that E � me. The use of Kramers–Kronig relations might provide

a way of relating the real part of the refractive index to the imaginary part near threshold.

But, at gamma-ray energies well below the pair production threshold the QED vacuum

polarization term is well-approximated by the expression ∆QED = (α/45π) (B⊥/B~)
2. ∆QED

has a magnitude O(10−9) near the stellar surface and O(10−22) near the light cylinder, while

the ALP-photon mixing term, ∆aγ has the magnitudes O(10−15) and O(10−22) near the

stellar surface and near the light cylinder, respectively, for an assumed coupling constant

gaγ = 10−7.

Equation 7.2 can be written in terms of the density matrix

ρ =


Ax

Ay

a

⊗ (AxAya)∗ (7.9)

as i∂zρ(z) = [U , ρ(z)]. The solution of this equation gives

U = eiMz (7.10)
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and

ρ(z) = U †0(z)ρ0U0(z) (7.11)

But somce U0 is no longer unitary, it is convenient to first find a new set of basis functions

that diagonalize the mixing matrix in order to evaluate U . Diagonalization of this mixing

matrix yields a transfer matrix U of the form

U = eiλ1dT1 + eiλ2dT2 + eiλ3dT3 (7.12)

with eigenvalues λi:

λ1 = ∆pl + i
2L

+ ∆QED

λ2 = 1
2

(
∆a + ∆pl + i

2L
+ ∆QED −

√[
∆a −

(
∆pl + i

2L
+ ∆QED

)]2
+ 4∆2

aγ

)
λ3 = 1

2

(
∆a + ∆pl + i

2L
+ ∆QED +

√[
∆a −

(
∆pl + i

2L
+ ∆QED

)]2
+ 4∆2

aγ

) (7.13)

For notational simplicity we introduce δ such that

δ = 2∆aγL (7.14)

Using the mixing angle notation, the matrices Ti can be written

T1 =


cos2 ψ − sinψ cosψ 0

− sinψ cosψ sin2 ψ 0

0 0 0



T2 =


−1+

√
1−4δ2

2
√

1−4δ2
sin2 ψ −1+

√
1−4δ2

2
√

1−4δ2
sinψ cosψ iδ√

1−4δ2
sinψ

−1+
√

1−4δ2

2
√

1−4δ2
sinψ cosψ −1+

√
1−4δ2

2
√

1−4δ2
cos2 ψ iδ√

1−4δ2
cosψ

iδ√
1−4δ2

sinψ iδ√
1−4δ2

cosψ 1+
√

1−4δ2

2
√

1−4δ2
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T3 =


1+
√

1−4δ2

2
√

1−4δ2
sin2 ψ 1+

√
1−4δ2

2
√

1−4δ2
sinψ cosψ −iδ√

1−4δ2
sinψ

1+
√

1−4δ2

2
√

1−4δ2
sinψ cosψ 1+

√
1−4δ2

2
√

1−4δ2
cos2 ψ −iδ√

1−4δ2
cosψ

−iδ√
1−4δ2

sinψ −iδ√
1−4δ2

cosψ −1+
√

1−4δ2

2
√

1−4δ2


The probability that a photon beam initially in some state ρi will be found in the ρf state

after propagating some distance d is

Pρi→ρf = Tr
[
ρfUρiU †

]
(7.15)

The density matrix for an unpolarized beam ρunpol and the density matrix for an ALP state

ρa are

ρunpol =
1

2


1 0 0

0 1 0

0 0 0



ρa =


0 0 0

0 0 0

0 0 1


We are interested in the case of an unpolarized beam of VHE photons propagating

through a pulsar magnetosphere and the rate at which such photons convert to ALPs. The

probability of ALP-photon oscillations is given by

Pγ→a = Tr
[
ρaUργU †

]
(7.16)

The probability of ALP-photon oscillation is calculated for positions throughout a

pulsar magnetosphere for a photon beam with energy Eγ = 100 GeV and for Eγ = 1 TeV,

with the ALP-photon coupling taking a range of values. The results are shown in Figure 7.8
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Figure 7.8: Probability of photon-ALP oscillation at locations through a pulsar
magnetosphere calculated using Equation 7.16 where ma = 10−4 eV and d is the distance to
the light cylinder from the initial position. Paγ is shown for Eγ = 100 GeV (top), Eγ = 1 TeV
(bottom) with various values of g. The x−axis gives the emission location of the considered
photon, d is measured from this distance. Both graphs show that the probability of oscillation
is negligible until beyond 10Rs. In general lower energy photons have a larger probability of
oscillation for the parameters considered. The suppression of the ALP-photon oscillations
near the stellar surface is due to inclusion of the vacuum polarization term, ∆QED, and the
oscillation probability becomes nonnegligible once the other terms are of the same order
of magnitude as ∆QED. Including ∆QED inside of the pair producing region is clearly not
rigorously correct, but is shown here to bound the possible effects of vacuum polarization.
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Figure 7.9: Probability of photon-ALP oscillation (top) and probability of photon survival
(bottom) at locations through a pulsar magnetosphere calculated using Equation 7.15 with
∆QED set to zero where ma = 10−4 eV, Eγ = 1 TeV d is the distance to the light cylinder
from the initial position. The x−axis gives the emission location of the considered photon.
The graph of Paγ shows that the probability of oscillation negligible until beyond 5Rs. The
suppression of ALP-photon oscillations near the stellar surface is due to the strength of the
pair absorption term in this region. ALP-photon oscillations are limited to a narrow region
of the magnetosphere.
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7.3.3 Monte Carlo Simulation of Photons

The recent observations by VERITAS and MAGIC of the Crab pulsar up to > 400 GeV

energies and the analysis presented in Chapter 5, paired with the natural overlap in dmax

and L at these energies motivates a more careful examination of ALP-photon oscillations

on observable quantities like the light curves and spectra of the VHE emission. To study

this effect, a Monte Carlo simulation of the emission and propagation of VHE photons is

performed. The generation of a distribution of VHE photons throughout the theoretical

emission regions in a pulsar magnetosphere is described in Chapter 6. The same algorithm

is applied here.

Photon distributions are simulated for each combination of pulsar parameters given

in 6.1. The parameters for each photon (initial position, energy, phase position, path to

observer) are then used with Equation 7.16 to calculate the probability of ALP-photon

oscillation and the probability of photons surviving in either polarization state. Rather than

directly using the probability in a Monte Carlo calculation to accept or reject individual

events, the probability of photon survival Pγγ for an individual photon position and energy

is used as a weighting factor for the produced light curve and differential energy spectrum

to preserve computational resources.

7.4 Results

The results of the Monte Carlo simulations of photon emission and propagation in

pulsar magnetospheres are presented for each of the viewing geometries discussed in Chapter

6. Photon distributions are generated for 500, 000 photons uniformly distributed throughout

the emission region as described in Chapter 6. Energies are assigned to the photons using a

power-law spectrum with parameters from the 2011 VERITAS observations of the Crab with
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Geometry Pair Attenuation ALP-mixing
Viewing Angle Spectral Index Spectral Index Spectral Index

(ζ) (ΓG) (Γpp) (Γaγ)

π/12 −2.36± 0.03 −2.45± 0.04 −2.36± 0.04

π/6 −2.38± 0.02 −2.40± 0.02 −2.40± 0.02

π/4 −2.40± 0.01 −2.41± 0.01 −2.41± 0.01

π/3 −2.37± 0.02 −2.64± 0.05 −2.64± 0.05

5π/12 −2.45± 0.02 −3.73± 0.11 −3.73± 0.11

π/2 −2.56± 0.05 − −

Table 7.1: Results of Spectral Fit with Power Law Function

a threshold energy of 600 GeV. Photons are then propagated through the magnetosphere

and the probability of ALP-mixing, Paγ,; the probability of photon survival, Pγγ,; and the

probability of pair attenuation are calculated.

Figure 7.10 shows the light curves (a) and the SEDs (b) for each simulated viewing

angle for one selected pulsar inclination angle ξ = π/3. The full results for all simulated

values of ξ are shown in Appendix C. Very little effect on the spectrum is seen from ALP-

photon oscillations. However, Figure 7.11 shows a small but significant difference in the light

curve. Three physical scenarios are considered:

1. the geometric effects of the pulsar magnetosphere and viewing angles

2. the geometric effects and the effects of pair attenuation

3. the geometric effects, the effects of pair attenuation and the effects of ALP-photon

oscillations

The three scenarios are shown in the same plots for comparison. Figure 7.10a shows light

curves for the three physical scenarios considered. Four of the six viewing angles have

negligible differences between the “observed” light curves with and without pair creation
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(a) Light Curves (b) SEDs

Figure 7.10: Results of simulations of photon emission and propagation in a pulsar
magnetosphere with inclination angle ξ = π/3 and various viewing angles. Light curves are
shown (left) for the observed photons with considerations for geometry only (black), geometry
and pair attenuation (red) and geometry, pair attenuation and ALP-photon mixing (blue).
For many viewing angles variations in light curves are negligible. More pronounced effects
are seen for ζ = π/12 and ζ = π/2. Differential spectra are shown (right) for the observed
photons with consideration for geometry only (black), geometry and pair attenuation (red)
and geometry, pair attenuation and ALP-photon mixing (blue). Each distribution is fit with
a power law function (solid line) and 95% confidence bands (dotted line) are shown. The
best-fit spectral indices for each viewing angle are shown in Table 7.1.
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Figure 7.11: Results of simulations of photon emission and propagation in a pulsar
magnetosphere with inclination angle ξ = π/3 and ζ = π/12. The light curve is shown
(above) for the observed photons with considerations for geometry only (black), geometry
and pair attenuation (red) and geometry, pair attenuation and ALP-photon mixing (blue).
The differential spectrum is shown (bottom) for the observed photons with consideration for
geometry only (black), geometry and pair attenuation (red) and geometry, pair attenuation
and ALP-photon mixing (blue). Each distribution is fit with a power law function (solid
line) and 95% confidence bands (dotted line) are shown. The best-fit spectral indices are
shown in Table 7.1.
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and do not hold promising outlooks for observational constraints. The two extremes of

viewing angles ζ = π/12 and ζ = π/2 show some visible differences between the light curve

for scenarios (1),(2) and (3) (see expanded view Figure 7.11). In scenario (1) photons survival

is dependent only on the angle between propagation and the line of sight to the observer. In

scenario (2) photons have an addition dependency on pair attenuation. Any discrepancies

between (1) and (2) are solely the result of pair attenuation. In scenario (3) photons that

may be “observed” in scenario (1) may oscillate into an ALP state and not survive or they

may oscillate in a fashion that allows the photon to survive propagation when otherwise the

photon would undergo pair production. Photons emitted in the observed phases 0.0 − 0.25

are highly attenuated in scenario (2) with few to no photons surviving propagation. In

scenarios (1) and (3) the light curves are identical, demonstrating that for some geometries

ALP-mixing allows for the survival of photons that would otherwise be attenuated. While

Figure 7.10a shows that there may be a difference in the light curve from pulsars due to ALP

mixing, there are many complicating factors to explaining particular light curve shapes and

a minor variation in light curve shape could be explained using one of many other models

or factors that determine light curve shapes.

The 2011 VERITAS observations of VHE pulsed emission from the Crab and the

following 2015 MAGIC observations of TeV pulsed emission from the Crab came as somewhat

of a surprise because VHE photons are expected to be heavily attenuated in the strong

magnetic fields of pulsar magnetospheres. The precise nature of the VHE emission is not yet

understood or agreed upon, but current models do not allow for such high-energy emission

near the stellar surface. Figure 7.10b shows varying influence of ALP-mixing on the spectral

shape of a pulsar for different viewing angles. The spectral points are determined from

the simulated photon distribution and consideration of physical effects from scenarios (1),

(2) and (3). For scenario (1) a simple beaming angle cut is applied. For scenario (2) the

optical depth is calculated and photons in the optically thick regime are not “observed”
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following the prescription in Chapter 6. For scenario (3) the probability of photon survival

is calculated using Equation 7.16 and this probability is applied as a weighting factor. A

best fit is performed using a power law on the resulting energy distributions of surviving

photons. The power law function has the form:

F (E) = F0 (E/E0)Γ (7.17)

The energy E0 is set to 150 GeV for all cases. The results of the fit for each viewing angle

and physical scenario are shown in Table 7.1. Pair attenuation is expected to primarily affect

the spectral index due the energy dependence of attenuation. If ALP-mixing allows for an

increased survival rate for VHE photons, then the spectral index of the power law fits are

expected to be more similar for (1) and (3) than (1) and (2). For viewing angles ζ = π/6,

ζ = π/4, and ζ = π/3 the SEDs are nearly indistinguishable. The spectral indices from the

power law fit are all within agreement for these viewing angles. For viewing angles ζ = π/12,

ζ = 5π/12, and ζ = π/2 the SEDs are visually distinct for scenario (2) compared to scenarios

(1) and (3). The spectral indices ΓG and Γaγ are in agreement within the best-fit errors.

The spectral index Γpp is not in agreement with ΓG nor Γaγ for these viewing angles.

These differences in spectral indices can serve as a key metric to constrain the ALP

parameter space using VHE observations of pulsars. In addition to the difference in spectral

index amongst the physical scenarios considered, all photons above 500 GeV are attenuated

for the case ξ = π/3 and ζ = π/2. For some geometries VHE emission will be exteremely

weak or nonexistent without the inclusion of ALP-photon mixing.

Currently the Crab pulsar is the only known VHE pulsar. With new generation

experiments such as Cherenkov Telescope Array, which will have a greater sensitivity to

gamma rays than current generation telescopes, more VHE pulsars may be added to the

catalog. With a population of VHE pulsars the ALP parameter space can be probed using the
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methods described in this work and constraints can be placed on the ALP mass and coupling

constant. These constraints will complement the constraints from other astrophysical studies

and experimental searches.
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Chapter 8

Conclusion

In this dissertation, the VHE photon emission and propagation from pulsars are studied

in detail. Several theoretical models (polar cap, slot gap and outer gap models) have been

proposed to explain radiative emission from pulsars. One distinguishing factor of these

models is the location of emission regions. With new observations from the VHE band

better constraints are placed on the theoretical models. New results from ∼150 hours of

VERITAS observations of the Crab are presented in Chapter 5. Significant pulsed emission

is seen up to 400 GeV extending the Crab spectrum. The MAGIC detection of pulsed

emission up to ∼2 TeV cannot be confirmed by the VERITAS results; a deeper exposure is

necessary to further extend the spectrum of the Crab. The highest energies from the Crab

observed by VERITAS place a limit on the minimum height above the stellar surface of

VHE emission at 12Rs. The energy spectrum observed by VERITAS cannot be reproduced

by curvature radiation alone. Additional emission mechanisms such as inverse Compton

scattering are likely needed to account for the VHE pulsed emission beyond the spectral

break. In addition to ongoing observations of the Crab, the detection of other VHE pulsars

would also greatly aid in the understanding of these emission mechanisms.

The observed light curves of pulsars are heavily impacted by geometry. The Monte

Carlo simulations described in Chapter 6 demonstrate the range of light curves produced

130



by different geometries. Consideration of special relativistic effects is required to produce

light curves similar to observed pulsar light curves. Time-of-flight and aberration effects

drastically shift the distribution of photons to produce the observed asymmetric light curves.

Photons in the VHE regime are subject to pair production interactions when propagating

through strong magnetic fields. Pulsar magnetospheres can even become completely opaque

to VHE photons for some geometries. For one considered geometry all simulated photons

above 400 GeV were absorbed. In other cases, for example for a pulsar with magnetic

inclination angle ξ = π/3, there exist viewing angles at which few VHE photons are

attenuated. There also exist misalignment and viewing angles at which pair attenuation

significantly alters the observed pulsed signal and could result in significant differences

in the GeV and several-hundred GeV emission. The VHE spectrum of pulsars is also

strongly modified due to pair attenuation at higher energies. The suppression of the highest

energy signals by pair attenuation limits the possibility of ground-based detection to certain

geometries and should be taken into account in the selection of new source candidates. I

investigated the possibility that ALP-photon oscillations might change the observed lightcurves

or spectrum of gamma rays by either allowing more VHE gamma rays to escape pair creation

or to convert to axions without reconverting to gamma rays.

A theoretical solution to the strong CP problem of QCD, the axion, is considered in this

work as a possible means of decreasing the opacity of pulsar magnetospheres to VHE photons.

Axions, psuedo-Nambu Goldstone bosons, have been proposed as a solution to the strong

CP problem and by virtue of their coupling to quarks must also couple to photons allowing

for axion-photon oscillations. A broader class of pseudo-scalar, axion-like particles that

share the coupling with electromagnetism could arise from other extensions to the Standard

Model. Chapter 7 describes Monte Carlo simulations of ALP-photon mixing as VHE photons

propagate through pulsar magnetospheres. This dissertation demonstrates that for ALP

masses 10−4 eV < ma < 10 eV and coupling constants 10−11 GeV−1 < gaγ < 10−6 GeV−1
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ALP-mixing can occur in some regions of pulsar magnetospheres. This mixing allows for

photons to survive propagation that would otherwise be attenuated or for photons to convert

to axions and escape from the outer magnetosphere. ALP-mixing is shown to have some small

effect on the spectrum of pulsars at TeV energies and some effect on the shape of light curves.

The effects of QED vacuum polarization dominate mixing at distances from the stellar surface

just beyond the regime of strong pair attenuation out to near the light cylinder. The strength

of the magnetic fields of pulsars warrants consideration of QED vacuum polarization effects,

but the precise nature of these effects at photon energies Eγ � mec
2 are not well understood.

For future work, one could follow the methodology of to use the Kramers-Kronig relationship

between the real and imaginary (pair abosrption) part of the index of refraction to better

characterize the transition region, between the low energy cauum polarization regime and the

high energy pair production regime. Future investigations of the QED vacuum polarization

effects near the pair threshold will provide a more realistic model to test ALP-photon mixing

in pulsar magnetospheres. Better understanding of the possible effects of ALP-photon mixing

on pulsar observations could yet result in methods to constrain the axion-ALP parameter

space. The powerful magnetic fields of pulsars allow for a unique astrophysical laboratory

to study possible signals from axions and ALPs. Even if ALP oscillations produce small

effects on observables, the interplay between pair creation and geometry shown in this work

underscores the unique role that can be played by VHE observations of pulsars.
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Appendix A

List of Crab Data Run

Table A.1 Contains the full list of 422 quality-selected data observation runs used in

the analysis of the Crab nebula and pulsar in Chapter 5. Descriptions of the quality-selection

criteria used to generate this list of runs is described in Chapter 5. The 422 data runs used

total ∼ 150 hours of observations from 2007 to 2014.

133



Run ID

36604 41727 44096 52128 53172 53490 54619 55128 64110 69915 70356
36634 41794 44097 52129 53205 53491 54645 55129 64257 69916 70373
37009 41851 44326 52141 53206 53519 54646 55130 64258 69979 70381
37010 41876 44327 52155 53207 53520 54679 55131 64259 70351 70438
37195 41877 44531 52173 53208 53521 54680 55139 64325 70355 70439
37230 41879 44549 52175 53209 53581 54681 55140 64326 70357 70441
37231 41925 44566 52390 53210 53582 54682 55141 64378 70458 70458
37266 41926 44684 52391 53263 53703 54683 55142 64379 70530 70461
37267 41988 44862 52419 53264 53704 54684 55143 64380 70996 70463
37297 42032 43754 52446 53265 53705 54685 55160 64443 70997 70487
37298 42438 43766 52447 53266 53734 54738 55161 64759 71223 70488
37945 42439 44098 52448 53267 53735 54739 55162 64760 71224 70489
37946 42440 48394 52449 53268 53736 54740 55163 65255 71247 70490
37947 42510 48395 52450 53269 53737 54741 55164 65311 71347 70532
37948 42553 48396 52477 53290 53738 54743 55186 65312 71348 70533
37949 42854 48397 52478 53291 53739 54744 55187 65370 71375 70690
37950 42893 48398 52479 53292 53740 54745 55188 65371 71454 70754
38032 42894 48399 52480 53294 53772 54772 55189 65404 71455 70755
38033 42895 48400 52481 53302 53811 54773 55212 65474 71477 71197
38034 42928 48401 52507 53304 54501 54774 55213 65776 71802 71198
38035 42948 48402 52508 53305 54502 54775 55214 65777 38753 71523
38061 42949 48403 52592 53306 54503 54776 55215 65778 38762 71524
38062 43366 48578 52593 53307 54519 54781 55243 65779 41793 71547
38063 43367 48579 52594 53317 54520 54782 55244 66002 57993 71916
38064 43464 48580 52595 53318 54521 54783 55272 66003 58193
38200 43465 48581 53047 53319 54522 54806 55273 66534 58861
38273 43757 48582 53048 53320 54550 54807 55301 67044 58862
38405 43758 48583 53049 53332 54551 54808 55302 67071 58892
38523 43759 48584 53075 53338 54554 54809 55303 67135 58893
38722 43760 48585 53076 53420 54556 54810 55304 67137 58932
38759 43761 48854 53109 53421 54558 54811 55332 67138 58933
38764 43763 48921 53110 53422 54586 54813 55361 67251 58934
38957 43764 48923 53111 53423 54587 54882 55362 67252 58935
38958 43465 48924 53112 53424 54611 54883 55363 67271 58969
39035 43757 48925 53166 53454 54612 54884 55392 67272 58970
39036 43758 48926 53167 53455 54613 54886 55467 67292 58995
39072 43759 48927 53168 53486 54614 54915 55468 67293 58996
39073 43760 48928 53169 53487 54615 54916 55469 67332 70322
39109 44015 48929 53170 53488 54616 54917 64108 69884 70323
39459 44052 48930 53171 53489 54618 55127 64109 69914 70324

Table A.1: Crab Pulsar Run List

134



Appendix B

Monte Carlo Simulations of VHE

Emission and Propagation Results
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure B.1: Light curves from simulations for SG and OG models with inclination angle
ξ = π/12 and a range of viewing angles ζ. The light curves with only resulting only from
geometric considerations are depicted in black for both SG and OG models. Some photons
that are capable of being observed due to geometry are not observed due to pair attenuation
in the strong magnetic fields of the magnetosphere. The light curves showing the effect of
pair attenuation on VHE gamma rays are shown in blue. Some the light curves for some
viewing angles, ζ, are more strongly affected than others. For viewing angles of similar value
to the magnetic inclination angle the light curves are less affected as seen for both SG and
OG models.
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure B.2: Light curves from simulations for SG and OG models with inclination angle
ξ = π/6 and a range of viewing angles ζ. The light curves with only resulting only from
geometric considerations are depicted in black for both SG and OG models. Some photons
that are capable of being observed due to geometry are not observed due to pair attenuation
in the strong magnetic fields of the magnetosphere. The light curves showing the effect of
pair attenuation on VHE gamma rays are shown in blue. Some the light curves for some
viewing angles, ζ, are more strongly affected than others. For viewing angles of similar value
to the magnetic inclination angle the light curves are less affected as seen for both SG and
OG models.
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure B.3: Light curves from simulations for SG and OG models with inclination angle
ξ = π/4 and a range of viewing angles ζ. The light curves with only resulting only from
geometric considerations are depicted in black for both SG and OG models. Some photons
that are capable of being observed due to geometry are not observed due to pair attenuation
in the strong magnetic fields of the magnetosphere. The light curves showing the effect of
pair attenuation on VHE gamma rays are shown in blue. Some the light curves for some
viewing angles, ζ, are more strongly affected than others. For viewing angles of similar value
to the magnetic inclination angle the light curves are less affected as seen for both SG and
OG models.
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure B.4: Light curves from simulations for SG and OG models with inclination angle
ξ = π/3 and a range of viewing angles ζ. The light curves with only resulting only from
geometric considerations are depicted in black for both SG and OG models. Some photons
that are capable of being observed due to geometry are not observed due to pair attenuation
in the strong magnetic fields of the magnetosphere. The light curves showing the effect of
pair attenuation on VHE gamma rays are shown in blue. Some the light curves for some
viewing angles, ζ, are more strongly affected than others. For viewing angles of similar value
to the magnetic inclination angle the light curves are less affected as seen for both SG and
OG models.
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(a) Light curves using SG Model geometry (b) Light curves using OG Model geometry

Figure B.5: Light curves from simulations for SG and OG models with inclination angle
ξ = 5π/12 and a range of viewing angles ζ. The light curves with only resulting only from
geometric considerations are depicted in black for both SG and OG models. Some photons
that are capable of being observed due to geometry are not observed due to pair attenuation
in the strong magnetic fields of the magnetosphere. The light curves showing the effect of
pair attenuation on VHE gamma rays are shown in blue. Some the light curves for some
viewing angles, ζ, are more strongly affected than others. For viewing angles of similar value
to the magnetic inclination angle the light curves are less affected as seen for both SG and
OG models.
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Appendix C

ALP-mixing Results

Some text about the results presented here in this appendix

Geometry Pair Attenuation ALP-mixing
Viewing Angle Spectral Index Spectral Index Spectral Index

(ζ) (ΓG) (Γpp) (Γaγ)

π/12 − − −
π/6 − − −
π/4 −2.51± 0.01 −2.61± 0.01 −2.60± 0.01

π/3 − − −
5π/12 −2.51± 0.01 −2.54± 0.01 −2.54± 0.01

π/2 −2.51± 0.01 −2.53± 0.01 −2.53± 0.01

Table C.1: Results of Spectral Fit with Power Law Function (ξ = π/12)
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(a) Light Curves (b) SEDs
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Geometry Pair Attenuation ALP-mixing
Viewing Angle Spectral Index Spectral Index Spectral Index

(ζ) (ΓG) (Γpp) (Γaγ)

π/12 − − −
π/6 −2.49± 0.02 −2.53± 0.02 −2.51± 0.02

π/4 −2.49± 0.02 −2.53± 0.02 −2.51± 0.02

π/3 −2.53± 0.01 −2.54± 0.01 −2.54± 0.01

5π/12 −2.50± 0.01 −2.50± 0.01 −2.50± 0.01

π/2 −2.50± 0.01 −2.51± 0.01 −2.50± 0.01

Table C.2: Results of Spectral Fit with Power Law Function (ξ = π/6)
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(a) Light Curves (b) SEDs
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Geometry Pair Attenuation ALP-mixing
Viewing Angle Spectral Index Spectral Index Spectral Index

(ζ) (ΓG) (Γpp) (Γaγ)

π/12 −2.57± 0.04 −2.62± 0.04 −2.61± 0.04

π/6 −2.52± 0.02 −2.53± 0.02 −2.53± 0.02

π/4 −2.52± 0.02 −2.52± 0.02 −2.52± 0.02

π/3 −2.51± 0.01 −2.53± 0.01 −2.53± 0.01

5π/12 −2.55± 0.01 −2.61± 0.01 −2.61± 0.01

π/2 −2.54± 0.01 −2.58± 0.01 −2.58± 0.01

Table C.3: Results of Spectral Fit with Power Law Function (ξ = π/4)
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(a) Light Curves (b) SEDs
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Geometry Pair Attenuation ALP-mixing
Viewing Angle Spectral Index Spectral Index Spectral Index

(ζ) (ΓG) (Γpp) (Γaγ)

π/12 −2.63± 0.01 −2.86± 0.04 −2.62± 0.01

π/6 −2.49± 0.01 −2.50± 0.01 −2.49± 0.01

π/4 −2.52± 0.01 −2.53± 0.01 −2.52± 0.01

π/3 −2.51± 0.04 −2.51± 0.04 −2.50± 0.04

5π/12 −2.65± 0.02 −2.82± 0.03 −2.65± 0.02

π/2 −2.78± 0.11 −3.77± 0.04 −2.79± 0.11

Table C.4: Results of Spectral Fit with Power Law Function (ξ = π/3)
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(a) Light Curves (b) SEDs
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Geometry Pair Attenuation ALP-mixing
Viewing Angle Spectral Index Spectral Index Spectral Index

(ζ) (ΓG) (Γpp) (Γaγ)

π/12 − − −
π/6 − − −
π/4 −2.50± 0.02 −2.55± 0.02 −2.54± 0.02

π/3 −2.60± 0.02 −2.62± 0.03 −2.62± 0.03

5π/12 −2.54± 0.04 −2.60± 0.05 −2.59± 0.05

π/2 −2.58± 0.03 −2.61± 0.04 −2.60± 0.04

Table C.5: Results of Spectral Fit with Power Law Function (ξ = 5π/12)
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K. Zioutas. Experimental Search for Solar Axions via Coherent Primakoff Conversion in

a Germanium Spectrometer. Physical Review Letters, 81:5068–5071, December 1998. doi:

10.1103/PhysRevLett.81.5068.

W. Baade and F. Zwicky. On super-novae. Proceedings of the National Academy of Science,

20:254–259, May 1934. doi: 10.1073/pnas.20.5.254.

J. N. Bahcall. Neutrino astrophysics. 1989.

J. N. Bahcall, W. F. Huebner, S. H. Lubow, P. D. Parker, and R. K. Ulrich. Standard solar

models and the uncertainties in predicted capture rates of solar neutrinos. Reviews of

Modern Physics, 54:767–799, July 1982. doi: 10.1103/RevModPhys.54.767.
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E. J. Schneid, C. von Montigny, R. Mukherjee, and B. L. Dingus. The Third EGRET

Catalog of High-Energy Gamma-Ray Sources. The Astrophysical Journal Supplement

Series, 123:79–202, July 1999. doi: 10.1086/313231.

W. Heisenberg and H. Euler. Folgerungen aus der diracschen theorie des positrons. Zeitschrift

für Physik, 98(11):714–732, 1936. ISSN 0044-3328. doi: 10.1007/BF01343663. URL

http://dx.doi.org/10.1007/BF01343663.

A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins. Observation of

a Rapidly Pulsating Radio Source. Nature, 217:709–713, February 1968. doi: 10.1038/

217709a0.

162

http://dx.doi.org/10.1007/BF01343663


A. M. Hillas. Cerenkov light images of EAS produced by primary gamma. International

Cosmic Ray Conference, 3, August 1985.

K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama. Observation of a neutrino

burst from the supernova SN1987A. Physical Review Letters, 58:1490–1493, April 1987.

doi: 10.1103/PhysRevLett.58.1490.

G. B. Hobbs, R. T. Edwards, and R. N. Manchester. TEMPO2, a new pulsar-timing package

- I. An overview. Monthly Notices of the Royal Astronomical Society, 369:655–672, June

2006. doi: 10.1111/j.1365-2966.2006.10302.x.

J. Holder, R. W. Atkins, H. M. Badran, G. Blaylock, S. M. Bradbury, J. H. Buckley, K. L.

Byrum, D. A. Carter-Lewis, O. Celik, Y. C. K. Chow, P. Cogan, W. Cui, M. K. Daniel,

I. de la Calle Perez, C. Dowdall, P. Dowkontt, C. Duke, A. D. Falcone, S. J. Fegan,

J. P. Finley, P. Fortin, L. F. Fortson, K. Gibbs, G. Gillanders, O. J. Glidewell, J. Grube,

K. J. Gutierrez, G. Gyuk, J. Hall, D. Hanna, E. Hays, D. Horan, S. B. Hughes, T. B.

Humensky, A. Imran, I. Jung, P. Kaaret, G. E. Kenny, D. Kieda, J. Kildea, J. Knapp,

H. Krawczynski, F. Krennrich, M. J. Lang, S. LeBohec, E. Linton, E. K. Little, G. Maier,

H. Manseri, A. Milovanovic, P. Moriarty, R. Mukherjee, P. A. Ogden, R. A. Ong, D. Petry,

J. S. Perkins, F. Pizlo, M. Pohl, J. Quinn, K. Ragan, P. T. Reynolds, E. T. Roache, H. J.

Rose, M. Schroedter, G. H. Sembroski, G. Sleege, D. Steele, S. P. Swordy, A. Syson,

J. A. Toner, L. Valcarcel, V. V. Vassiliev, S. P. Wakely, T. C. Weekes, R. J. White,

D. A. Williams, and R. Wagner. The first VERITAS telescope. Astroparticle Physics, 25:

391–401, July 2006. doi: 10.1016/j.astropartphys.2006.04.002.

J. Holder, V. A. Acciari, E. Aliu, T. Arlen, M. Beilicke, W. Benbow, S. M. Bradbury,

J. H. Buckley, V. Bugaev, Y. Butt, K. L. Byrum, A. Cannon, O. Celik, A. Cesarini,

L. Ciupik, Y. C. K. Chow, P. Cogan, P. Colin, W. Cui, M. K. Daniel, T. Ergin, A. D.

Falcone, S. J. Fegan, J. P. Finley, G. Finnegan, P. Fortin, L. F. Fortson, A. Furniss,

163



G. H. Gillanders, J. Grube, R. Guenette, G. Gyuk, D. Hanna, E. Hays, D. Horan, C. M.

Hui, T. B. Humensky, A. Imran, P. Kaaret, N. Karlsson, M. Kertzman, D. B. Kieda,

J. Kildea, A. Konopelko, H. Krawczynski, F. Krennrich, M. J. Lang, S. Lebohec, G. Maier,

A. McCann, M. McCutcheon, P. Moriarty, R. Mukherjee, T. Nagai, J. Niemiec, R. A. Ong,

D. Pandel, J. S. Perkins, M. Pohl, J. Quinn, K. Ragan, L. C. Reyes, P. T. Reynolds, H. J.

Rose, M. Schroedter, G. H. Sembroski, A. W. Smith, D. Steele, S. P. Swordy, J. A.

Toner, L. Valcarcel, V. V. Vassiliev, R. Wagner, S. P. Wakely, J. E. Ward, T. C. Weekes,

A. Weinstein, R. J. White, D. A. Williams, S. A. Wissel, M. Wood, and B. Zitzer. Status

of the VERITAS Observatory. In F. A. Aharonian, W. Hofmann, and F. Rieger, editors,

American Institute of Physics Conference Series, volume 1085 of American Institute of

Physics Conference Series, pages 657–660, December 2008. doi: 10.1063/1.3076760.

Naoki Iwamoto. Axion emission from neutron stars. Physical Review Letters, 53:1198–

1201, Sep 1984. doi: 10.1103/PhysRevLett.53.1198. URL http://link.aps.org/doi/

10.1103/PhysRevLett.53.1198.

M. P. Kertzman and G. H. Sembroski. Computer simulation methods for investigating

the detection characteristics of TeV air Cherenkov telescopes. Nuclear Instruments and

Methods in Physics Research A, 343:629–643, April 1994. doi: 10.1016/0168-9002(94)

90247-X.

H. Krawczynski, D. A. Carter-Lewis, C. Duke, J. Holder, G. Maier, S. Le Bohec, and

G. Sembroski. Gamma hadron separation methods for the VERITAS array of four imaging

atmospheric Cherenkov telescopes. Astroparticle Physics, 25:380–390, July 2006. doi:

10.1016/j.astropartphys.2006.03.011.

M. I. Large, A. E. Vaughan, and B. Y. Mills. A Pulsar Supernova Association? Nature, 220:

340–341, October 1968. doi: 10.1038/220340a0.

164

http://link.aps.org/doi/10.1103/PhysRevLett.53.1198
http://link.aps.org/doi/10.1103/PhysRevLett.53.1198


D. M. Lazarus, G. C. Smith, R. Cameron, A. C. Melissinos, G. Ruoso, Y. K. Semertzidis,

and F. A. Nezrick. Search for solar axions. Physical Review Letters, 69:2333–2336, October

1992. doi: 10.1103/PhysRevLett.69.2333.

T.-P. Li and Y.-Q. Ma. Analysis methods for results in gamma-ray astronomy. The

Astrophysical Journal, 272:317–324, September 1983. doi: 10.1086/161295.

M. S. Longair. High Energy Astrophysics. February 2011.

A. G. Lyne, R. S. Pritchard, and F. Graham-Smith. Twenty-Three Years of Crab

Pulsar Rotational History. Monthly Notices of the Royal Astronomical Society, 265:1003,

December 1993. doi: 10.1093/mnras/265.4.1003.

M. Lyutikov, N. Otte, and A. McCann. The Very High Energy Emission from Pulsars: A

Case for Inverse Compton Scattering. The Astrophysical Journal, 754:33, July 2012a. doi:

10.1088/0004-637X/754/1/33.

M. Lyutikov, N. Otte, and A. McCann. The Very High Energy Emission from Pulsars: A

Case for Inverse Compton Scattering. The Astrophysical Journal, 754:33, July 2012b. doi:

10.1088/0004-637X/754/1/33.

G. Maier. Monte Carlo studies of the VERITAS array of Cherenkov telescopes. International

Cosmic Ray Conference, 3:1413–1416, 2008.

R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs. The australia telescope national

facility pulsar catalogue. The Astronomical Journal, 129(4):1993, 2005. URL http://

stacks.iop.org/1538-3881/129/i=4/a=1993.
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