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ABSTRACT

Gamma-Ray Burst Science in the Era of IACT Arrays

Ori Michael Weiner

In this thesis, we explore and improve on the science of gamma-ray bursts with particular atten-

tion to the very-high-energy regime. We begin by discussing Imaging Atmospheric Cherenkov

Telescope Arrays (IACTs), which are the primary instruments of observation at very-high-

energy gamma rays. We focus on a particular, state-of-the-art IACT array in southern Arizona:

Very Energetic Radiation Imaging Telescope Array System (VERITAS). We then discuss the

science of gamma-ray bursts and what can be learned from IACT observations. We follow with

a couple of technical improvements, allowing one to better search for and characterize gamma-

ray bursts with IACTs. The techniques focus on statistical methods for detection of transient

sources, as well as angular reconstruction at arbitrary zenith angles of observation. We then use

one of our new statistical methods to search for a signal in VERITAS observations of gamma-

ray burst locations, with tests designed to search for particular bursts as well as for hints of

emission in the entire sample of observations. We conclude that there is no evidence for a sig-

nal and follow with a discussion of a particularly interesting non-detection of GRB 150323A.

We discuss the implications of this non-detection on the energetics and ambient environment

of this burst. We conclude that the VERITAS observations might indicate gamma-ray bursts

taking place in the dense wind of Wolf-Rayet stars.
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Introduction

Gamma-ray bursts (GRBs) were discovered accidentally in the 1960s by the VELA satellites

(Klebesadel et al., 1973). They are the brightest sources of electromagnetic radiation known

in the universe, releasing an energy on the order of 1051 erg in a short timescale of seconds to

minutes (as observed on Earth). At least some events have been definitively associated with

a supernova, and some others–shorter in timescale–are believed to be the result of mergers of

compact objects. The underlying mechanisms responsible for the great variability and versatile

nature of the observed prompt emission light curves are still largely unkonwn (Kumar and

Zhang, 2015).

Very high energy (VHE) gamma-rays have yet to be detected from a GRB. This is likely due to

a combination of technical constraints (slewing time, limited field of view), and the scattering

of distant VHE gamma-rays by the ambient extragalactic background light, which greatly at-

tenuates distant gamma-ray sources. A detection of VHE emission is a crucial aspect of model

verification, and in particular can allow one to gain insight into the properties of the circum-burst

medium (CBM) as well as the energetics of the burst.

This work begins with an introduction to VHE astronomy and gamma-ray burst science. In

Chapter 1 we introduce the basic techniques and instruments that observe the gamma-ray sky,

xxv
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with a special focus on the Very Energetic Radiation Imaging Telescope Array System (VER-

ITAS), an array of Imaging Atmospheric Cherenkov Telescopes (IACTs) located in southern

Arizona. In Chapter 2 we summarize some of the most important results on gamma-ray bursts

obtained since they were first discovered in the 1960s. We then discuss processes that might

lead to VHE emission, as the ejecta of the burst interact with the ambient medium, and what

might be learned from either a detection or a non-detection of such emission.

The following chapters contain our original work: we first focus on improving IACT capability

for detecting and analyzing GRBs. We then use our new techniques to analyze promising GRB

data observed by VERITAS and to interpret the results.

In Chapter 3, we discuss the development of a novel test statistic for detecting and characteriz-

ing transient and variable gamma-ray sources, by use of maximum likelihood estimation. We

first tackle the case of a time-independent background to derive a fundamental and elegant test

statistic, and later expand our technique to a more realistic case involving IACT background

rates which could change during the course of an observation. In Chapter 4, we discuss the

implementation and testing of this technique on VERITAS software, by use of both data and

Monte Carlo simulations.

In Chapter 5, we explore ways of improving the angular reconstruction of events, with par-

ticular attention to observations conducted at large zenith angles. GRBs are known to occur

isotropically in the sky, and thus most VERITAS GRB observations happen at what we con-

sider large zenith angles (> 45deg). Observation of other, non-transient, gamma-ray sources

at large zenith angles are typically avoided due to their detrimental effect on IACT sensitivity.

We generalize on work done by others for angular reconstruction at large zenith angles, and test
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a new approach that combines multiple algorithms into a single one for optimal response in a

variety of circumstances.

In Chapter 6, we select a collection of promising VERITAS observations and analyze them us-

ing our time-dependent test statistic. We design a priori collective statistical tests that could

extract a potentially weak signal present in multiple bursts. We find no detection in any indi-

vidual observation or collective test. We then focus our attention on the particularly limiting

non-detection of GRB 150323A. We discuss the upper limit obtained for this burst first in an

empirical context, showing that it is fainter than one would expect from established GeV results.

Then, we discuss how the upper limit constrains the CBM environment and the energetics of

this burst.



Chapter 1

IACT array technology, with an emphasis

on VERITAS

1.1 Introduction

The current generation of Imaging Atmospheric Cherenkov Telescope (IACT) arrays are the

product of a rich history of experimentation in an attempt to observe and characterize astro-

physical gamma-rays (Weekes, 2006).

In 1948 P. Blackett calculated that about 0.01% of the night-sky light is produced by Cherenkov

radiation derived from cosmic-rays (Blackett, 1948). The process through which this happens

is depicted in Figure 1.1: the incoming cosmic-ray particle produces a cascade of charged ultra-

relativistic particles, travelling faster than the local (atmospheric) speed of light and producing

1
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FIGURE 1.1: A cartoon of cosmic-ray-produced Cherenkov radiation, drawn by J. V. Jelley in
1993 and displayed by T. Weekes in Weekes (2006). A cosmic-ray or γ-ray impinges on the
atmosphere and produces a shower of relativistic particles, some of which charged. The charged
particles in the shower produce Cherenkov radiation which can be detected on the ground by a

simple dish and receiver.

Cherenkov radiation as a result (Cherenkov, 1934). This emission can be detected through a

simple setup such as a parabolic mirror and a photomultiplier tube.

The first such detection of Cherenkov light from cosmic rays is due to W. Galbraith and J. V. Jel-

ley in their groundbreaking experiment in 1952 (Galbraith and Jelley, 1953). The experimental

setup was remarkably simple with a small parabolic mirror and a photomultiplier tube placed

inside of a dustbin (Figure 1.2). The detector was placed inside of an existing array of Geiger-

Müller (G-M) tubes. Through a series of tests using an oscilloscope and a trigger connection

to the G-M tube array, Cherenkov radiation was found and was strongly (and significantly)

correlated to radiation detected by the G-M tubes.
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FIGURE 1.2: The detector used by Galbraith and Jelley for the first detection of Cherenkov
radiation produced by cosmic rays. It consists of a parabolic mirror and a photomultiplier
tube at its focus, placed inside of a dustbin for protection from ambient light. Taken from

https://timeline.web.cern.ch/air-cherenkov-discovery-galbraith-jelley.

This new approach to detecting cosmic-rays had a lot of promise. One principal reason is the

ability of optical detectors to observe a narrow field of view. An ability to observe Cherenkov

light in a particular direction (taking into account the highly directional nature of atmospheric

Cherenkov radiation) is very appealing in terms of the possibility of detecting sources of gamma-

rays and characterizing their physics.

One major hurdle stood in the way of Cherenkov astronomy: It was already well known at

the time that charged astrophysical cosmic-rays vastly outnumber gamma-rays (Cronin, 1999).

Since charged particles are bent in magnetic fields on their way to Earth, they do not pro-

vide easily useful information on their direction of origin and on the physical nature of their

sources. They also make it exceedingly difficult to detect gamma-ray sources, by creating a

large Poisson-distributed background.
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This gamma-ray to cosmic-ray (signal to noise) ratio meant that it took a much more sophisti-

cated setup than the one used by Galbraith and Jelley to first detect an astrophysical source. The

main challenge was to discriminate between showers produced by gamma-rays and cosmic-

rays. This was eventually achieved by using telescope images of showers rather than traces of

a single photomultiplier tube, in conjunction with sophisticated simulations of shower develop-

ment to allow one to classify those images (Hillas, 1985). The first gamma-ray source detection

was of the Crab Nebula in 1989 (Weekes et al., 1989). It was achieved using the Whipple

telescope (Kildea et al., 2007).

Modern IACT arrays involve multiple telescopes, using their stereoscopic imaging to better de-

termine the direction, energy, and type (gamma-ray or cosmic-ray) of shower observed. Both

technique and instrumentation are still rapidly evolving. This chapter will focus on VERITAS

(Very Energetic Radiation Imaging Telescope Array System), a state-of-the-art IACT array lo-

cated in Southern Arizona, USA (Krennrich et al., 2004). Through exploration of VERITAS

instrumentation, software, and technique, we will attempt to provide a detailed overview of how

Cherenkov astronomy is done today.

1.2 The fundamental processes: extensive air showers and

their Cherenkov radiation

Before we begin with an exploration of the VERITAS instrument, we will briefly discuss two

vital physical aspects of the experimental process: the development of extensive air showers
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and Cherenkov radiation. For more detailed information, particularly on the air shower devel-

opment, we suggest Aharonian et al. (2008).

1.2.1 Extensive air showers

Extensive air showers can be the result of a cosmic-ray or gamma-ray impinging on the at-

mosphere. As we shall see, those different types of showers are (mostly) distinguishable in

theory.

A high energy photon entering the atmosphere (henceforth known as a primary photon), with

an energy exceeding two electron rest masses (about 1 MeV), will be capable of producing

an electron-positron pair due to the atomic nuclei present in air. The charged particles will

experience bremsstrahlung in air and will be capable of producing photons themselves.

It requires a primary with energy much greater than 1 MeV for this cycle to continue: if in-

deed the electron-positron pair produced by the primary photon has sufficient energy to create

energetic gamma-rays through bremsstrahlung (� 1 MeV), those will produce more electron-

positron pairs, and the cycle will continue (when the energy of the electron-positron pairs drops

sufficiently, ionization losses will compete with bremsstrahlung, and the shower will come to a

halt). The exact development of the shower will depend on the primary energy, composition of

the atmosphere, and statistics that are inherent in particle interactions. Figure 1.3 shows a sim-

ulated Monte-Carlo shower for a 300 GeV primary entering the atmosphere. Experimentally

speaking, it is very difficult to observe showers from primary photons of less than a few tens of

GeV. Their distance, faintness, and the abundant night sky background is enough to make them

difficult to see, let alone reconstruct (i.e. determine their primary energy and direction).
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FIGURE 1.3: Side-view images of extensive air showers, produced by a Monte-Carlo simulator.
The lines correspond to tracks of charged particles. Left: EAS originating from a primary
gamma-ray with energy 300 GeV. Right: EAS originating from a primary proton (cosmic-ray)

with energy 1 TeV. From Aharonian et al. (2008).

A primary high energy cosmic-ray proton or nucleus will generally fragment nuclei in air as well

as produce pions, both neutral and charged. The pions will generally have relatively large trans-

verse momentum, as opposed to an electron-positron pair produced by a high energy photon–a

feature that is key in rejection of the cosmic-ray background. Neutral pions will decay into high

energy gamma-rays which will initiate their own showers by the same process we described

for a primary gamma-ray. The charged pions will decay into muons and neutrinos. The high

energy muons will often reach all the way to the ground level without interacting, producing
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Cherenkov radiation (see § 1.2.2) in the process and creating a significant source of background.

Figure 1.3 shows a simulated shower of a 1 TeV proton, demonstrating the dramatic effect the

transverse momentum of the pions has on the structure of the shower. While this typical ex-

ample can be identified by a Cherenkov telescope, it is impossible to distinguish all cosmic-ray

showers from gamma-ray showers, due to proton and nuclei-induced showers that happen to

evolve in a way that looks similar to a gamma-ray shower (Sobczyńska, 2007), as well as some

electron-induced showers that are generally very similar to photon-induced showers (though

some work has been done on attempting to separate the two; see for example Sahakian et al.

(2006)). Thus Cherenkov telescope arrays always have to cope with some level of irreducible

cosmic-ray background.

1.2.2 Cherenkov radiation

Cherenkov radiation was initially observed in experiments involving radioactivity as a faint blue

light, and was poorly understood. Most of the early work in understanding the effect is due to

Cherenkov, Frank, and Tamm (Jelley, 1955).

When a charged particle travels through a dielectric medium, it polarizes nearby atoms and

molecules. In any given small region, or molecule, the polarization will very quickly relax,

producing a quick pulse of radiation. One can show that these pulses will interfere coherently

if and only if the charged particle travels faster than the local speed of light. The angle at which

they interfere will depend on the refractive index of the medium as well as the velocity of the

charged particle.
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FIGURE 1.4: From Jelley (1955). A diagram demonstrating the constructive interference re-
sponsible for Cherenkov radiation (more information in the text).

The geometry of the Cherenkov effect is demonstrated in Figure 1.4. The charged particle

travels in a straight line from point A to B at a velocity given by βc, where c is the speed

of light in vacuum. Consider two pulses of light originating at nearby points along the line

AB, such as the point P1, and a slightly farther point a distance of ∆x farther down the line

(much closer than P2). We would like to solve for an angle θ at which the spherical wavelets

(pulses) interfere constructively. Since the form of the wavelets (in phase an amplitude) should

be identical, it is sufficient that we require the wavelets to arrive at a point at the exact same time.

We suppose a point of interference is much farther away from the charged particle than ∆x, thus

simplifying the geometry (since ∆x is very small, this does not require a large distance). This

fact allows us to easily solve for the Cherenkov angle by equating the time it takes the particle

to travel the distance ∆x with the extra time the light from point P1 takes to reach a far away
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FIGURE 1.5: From Aharonian et al. (2008). Simulation of the Cherenkov light pool of an EAS.
Left: Light pool from a 300-GeV photon-induced shower. Right: Light pool from a 1-TeV
proton-induced shower. One can again see the effect of the transverse momentum of the pions

on the angular extent of the proton shower.

point: cos(θ)×∆x
c/n = ∆x

βc , giving θ = cos−1( 1
βn), where n is the refractive index of the material.

The Cherenkov wavefront will appear as a cone due to the time the wavefront had to travel from

each section of the particle’s trajectory. In Figure 1.4, this is represented by the line BC, as can

be seen by the wavefront of points P1, P2 and P3, at the time the particle reaches point B.1

We refer to Tamm (1939) for a full derivation of the amplitude and spectrum of the Cherenkov

radiation. Those details will be less important to understanding the technique of IACT arrays.
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1.2.2.1 Cherenkov Light Pool

IACT experiments observe Cherenkov radiation produced by extensive air showers in the at-

mosphere. The atmosphere has a relatively low refractive index, and thus a small Cherenkov

angle, even if the radiation-inducing charged particle travels infinitesimally close to the speed

of light. For example, a typical refractive index at a height of ∼ 7 kilometers is 1+2.9×10−4

(Aharonian et al., 2008), giving a Cherenkov angle of about 1.4◦ (if the charged particle travels

at c). However, the substantial height at which the EAS develops in the atmosphere, as well the

opening angle of the shower itself, can contribute to a substantial “pool” of Cherenkov light on

the ground.

An IACT must be within the Cherenkov light pool to be capable of detecting it. Thus, it’s

interesting to note that because of the definite and narrow Cherenkov angle, a telescope imaging

the shower may not see it even if it is within its field of view. This is why Cherenkov telescopes

can only observe the TeV sky that resides within their field of view, and possibly about 1◦

outside of it. What’s perhaps even more interesting is that some extensive air showers are

within the field of view, their primary is from a source within the field of view, and yet they

cannot be detected by the telescope.2

1The full Cherenkov cone projection to this two dimensional diagram would also include the line mirroring BC
around the AB axis.

2This is the main reason one should not think of a Cherenkov telescope as simply “imaging” the charged
particles in the EAS.
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1.3 Overview of the instrument

VERITAS is located in Mount Hopkins, Arizona, USA, at an altitude of 1,268 meters (Holder

et al., 2011). It consists of 4 telescopes, each of which has a 12 meter diameter and of a Davies-

Cotton (Davies and Cotton, 1957) design. Each telescope contains 350 aluminum-coated glass

mirrors of hexagonal shape, with a camera consisting of 499 photomultiplier tubes (PMTs) and

a ∼3.5◦ field of view (Galante, 2012). In the standard mode of operation all telescopes point to

the same position in the sky. Figure 1.6 shows the array as well as an individual telescope and

camera.

The amount of data that would be needed to record all information (photons) impinging the

PMTs is extremely difficult to store and process. A mechanism for selecting the important

times for storage and analysis is thereby implemented, using a sophisticated system of multi-

stage hardware triggers (Cogan (2006); Weinstein (2007); Zitzer (2013)):

1. The first stage occurs in each telescope individually. All PMTs are connected to a constant

fraction discriminator (CFD) - a device whose purpose is to find the maximum of a pulse.

A threshold value for this maximum is required to activate the first level trigger. This

threshold is experimentally decided and updated every few months to reflect PMT aging.

The goal is to include as many possible events without overloading the readout hardware.

An event corresponds to about 10 ns around the trigger, in what hopefully captures the

Cherenkov signature of an EAS, rather than night sky background (NSB, light coming

from stars and other nearby ambient sources). As the CFD threshold is lowered, too

many events are in fact related to the NSB and overload the capacity of the hardware.
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FIGURE 1.6: Top: A panoramic view of Whipple Observatory Base Camp in Southern Arizona,
containing the VERITAS array. From Sentürk (2013). Bottom: An image of a single telescope
of the array as well as its camera. The diameter of the telescope is 12 meters. The camera
consists of 499 photomultiplier tubes corresponding to a field of view of approximately 3.5◦.

From Holder (2015).

2. The second stage trigger also occurs in each telescope individually. It requires multiple

neighboring CFDs to trigger (recall each CFD corresponds to a single PMT in the cam-

era). This trigger relies on the compact angular extent of extensive air showers compared
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to that of the NSB, which is largely uncorrelated on pixel-to-pixel angular scales. The ex-

act requirements are for 3 neighboring pixels to activate a first stage trigger within about

5 ns of each other (Zitzer, 2013).

3. The third trigger stage is an array trigger. It requires at least two telescopes to have

activated the second stage trigger within a programmable time frame, between 10 ns

and 250 ns. This time is usually chosen to be around 50 ns. It serves both as quality

assurance, and as a way to filter muon-related Cherenkov light (Vacanti et al., 1994) from

muons that are produced in extensive air showers, and which usually appear on a single

telescope only.

The typical after-trigger data rates are around 300 Hz, but depend largely on choice of trigger

parameters, zenith angle of observation, and other conditions such as NSB levels (for example

rates can rise substantially when the Moon is above the horizon). The hardware readout capacity

requires the third level trigger to be suppressed while an event is being recorded, resulting in a

dead-time of approximately 10% for a rate of 300 Hz (Weinstein, 2007).

1.4 Modes of operation: standard runs and calibration runs

1.4.1 Introduction

The standard mode of operation for VERITAS relies on 30-minute long runs during which

all telescopes in the array point to the same position in the sky, continually tracking it as the

Earth rotates. However, there are some exceptions to this rule, for example during special
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calibration runs and observations of extended sources. We will discuss the most pervasive

types of observations without being fully exhaustive. We note that new IACT array observing

strategies are constantly being discussed and researched (for example, Actis et al. (2011)).

1.4.2 Calibration runs

Calibration runs are typically taken during the start of an observing night, and when conditions

have changed sufficiently to warrant a reanalysis. A fast LED flasher system was developed

for the purpose of PMT calibration (Hanna et al., 2009). The LEDs are turned on to flash 300

times per second, and data taking is synchronized with an artificial trigger, to make sure that no

external events are recorded. The response of each PMT can be monitored, and later used to

correct for differences in gain and timing when data is being analyzed.

There are additional types of calibration performed occasionally on all telescopes or individual

ones (for some detailed examples, see Hanna (2007)). This includes measuring mirror reflectiv-

ity, calibrating pointing monitors (small optical cameras that help measure the pointing error of

every telescope), and studying the event rate as a function of CFD threshold to find an optimal

setting.

1.4.3 ON/OFF observations

The oldest method of observing a potential gamma-ray source is to point the instrument to

observe the source for an ON observation, and to subsequently point it to a nearby background

(OFF) region with similar characteristics (for example zenith angle, or distance to the Moon).
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This was the method of choice in the early stages of IACT astronomy when instruments lacked

angular reconstruction (beyond the angular precision that is given by the entire FOV). Ideally,

one would observe a much higher rate of events during the ON observation in a statistically

significant manner, establish the existence of a source and analyze its properties. For more

details on the statistical tools involved here, see § 1.5.3.

1.4.4 Camera acceptance and wobble observations

The ability to reconstruct the direction of an incoming gamma-ray to an accuracy of ∼ 0.1◦

(Lessard et al., 2001) opened up new possible modes of observation. Once this was achieved,

OFF observations were no longer needed at all, since the background could be sampled from

an independent part of the field of view.

To come up with a good observing strategy, one has to consider that the rate of background

events observed near the camera center per unit angular area is much higher than at the edges

of the FOV, and in fact declines smoothly in between (Berge et al., 2007). Figure 1.7 shows this

effect in both simulation and data.

This radial drop in the rate of events can be explained primarily as a result of the narrow angular

distribution of Cherenkov light radiating from the imaged showers. A simple thought experi-

ment should shed some light on this effect. One can imagine starting with a shower that is

directly overhead to the telescope (resulting in a compact radially symmetric image) and shift-

ing it in the horizontal plane, without changing its angular direction; after it has been moved

by about one degree, or about 200 meters at the typical EAS height, the Cherenkov light pool

will no longer cover the telescope and thus the shower will not be visible (contrary to what one
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would expect based on usage of the word “imaging”). This fact alone would suggest that the

rate of events will remain fairly constant until one reaches about 1 degree away from the edge of

the camera, at which point it will begin to rapidly decline. However, since multiple telescopes

are used and a multiplicity is required for an event to trigger the array, even showers with a

directionality near the center of the FOV may fail to trigger a sufficient number of telescopes

on the ground. The exact details will depend on the orientation of the telescopes on the ground,

the choice of triggering parameters, as well as the energy of the shower. In general a more

energetic shower will have a larger Cherenkov light pool, and will more easily trigger multiple

telescopes in the array; thus the trigger rate for energetic showers will remain fairly constant

near the center of the field of view. To illustrate, we show a few normalized plots of the rate as

a function of radial distance–also known as acceptance curves–produced for different energy

ranges in Figure 1.8.

It turns out to be a good approximation under most circumstances that the rate of cosmic-ray

events is indeed symmetric around the camera center (Berge et al., 2007). However, some

deviation can be expected, for example, due to a zenith angle effect on the brightness of a

shower because of atmospheric absorption of Cherenkov photons, as well as on the interaction

height, which will increase with zenith angle, thus forming a larger Cherenkov light pool on the

ground.

1.4.4.1 Wobble observations and the reflected region model

Keeping that in mind, a typical observing strategy is thus to point the telescopes slightly away

from the source, typically by 0.5◦ (sometimes more for extended sources). This strategy, known

as a wobble observation, allows one to construct background regions in the FOV that are of the
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FIGURE 1.7: Inhomogeneous, radially symmetric, background rates in IACT observations. Up-
per Left: A data observation consisting of mostly background. One can see the concentration
of counts in the center being much higher than at the edges with a smooth, continuous decay.
Upper Right: The same effect is modelled in a Monte Carlo simulation of an IACT observa-
tion. Lower Right and Left: Using the area between the vertical (Y, Azimuth) and horizontal
(X, Altitude) lines to compare data and model. The plots produced show the rate in arbitrary
units as a function of displacement from the camera center, showing the data and model to be
in good agreement. These curves resemble acceptance curves, but are not equivalent. An ac-
ceptance curve would use the entire area of the camera, with the rate being plotted against the

distance from the center. From Berge et al. (2007).
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same distance to the center of the camera, and from which (to a good approximation) one can

expect similar background rates. These regions are sometimes referred to as reflected regions.

We show an example of this construction in Figure 1.9. In an attempt to correct for small

deviations from the assumed background symmetry around the center, the 0.5◦ displacement

from the source is rotated between 4 different directions: North, South, West, and East. Each

30 minute run is taken in a different direction.

1.4.4.2 Ring background model

Sometimes a reflected region analysis is either impossible or undesirable, for example, if bright

stars are located near many of the possible reflected regions. Also, sometimes a very detailed

understanding of the background rate is desired, and the small amount of camera area covered

by the reflected regions is too small, resulting in large statistical uncertainties in the background

estimation. One method that can address these concerns is the very popular ring background

model (RBM). The model requires an acceptance curve, as shown in Figure 1.8. This curve

identifies the rate of background as a function of the distance to the camera center. A concentric

ring is then formed around the ON region and the background is calculated and normalized

based on the acceptance curve. One of the author’s contributions–discussed in later in this

work–involves a generalization of the RBM model. We will discuss the RBM in more detail

later in this chapter, and our work on generalizing it to detect transient sources in Chapter 3.
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FIGURE 1.8: Acceptance curve dependence on energy of the primary. Three acceptance curves
are shown, with energies indicated by the legend. A couple of effects are immediately clear.
First, acceptance declines rapidly as a function of radial distance. Second, the decay appears to
be much slower for energetic events. This can be explained as a result of the larger Cherenkov
light pool on the ground, resulting in an almost certain triggering of multiple telescopes by a
high energy shower with directionality corresponding to near the center of the FOV. From Berge

et al. (2007).
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FIGURE 1.9: Two separate ways of obtaining the background of a wobble observation. Note
that while the source appears in the center of the map, the observing positions are half a degree
away, denoted as yellow circles. Right: The reflected region approach. Reflected regions are
drawn symmetrically around the center of the camera for each observation. Due to approximate
radial symmetry, one expects the background rates in these regions to be similar to that of
the ON region. Left: The RBM approach. A ring is drawn concentric to the source in order
to obtain the background. To interpret the background rate, one must have knowledge of the
background rate as a function of the distance from the camera center (known as the acceptance
curve). The ring background is normalized based on how distant each point was from the center
of the FOV for each run. The strengths of this method lie in the ability to use large and flexible
parts of the FOV for studying the background, as well as its symmetrical nature around the
source which generally reduces systematic errors related to the assumption of radial symmetry.

From Berge et al. (2007).

1.5 Software and analysis methods

1.5.1 Overview

VERITAS has two full, independent, analysis packages: Event Display and VEGAS (VEritas

Gamma-ray Analysis Suite). While this duplicity can create some overhead and isn’t the fastest
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way to achieve results, it serves the important purpose of verifying results in addition to spotting

and correcting possible errors. The basic methods used by both packages are similar. The author

of this work has focused on VEGAS for both analyzing data and improving analysis methods.

We will therefore focus on VEGAS in the following subsections whenever such a distinction is

required.

Both VEGAS and Event Display are designed to process VERITAS data from raw after-trigger

data into scientific results, which include but are not limited to:

• Detecting a source

• Estimating flux and/or fluence

• Producing an upper limit on flux or fluence

• Fitting a spectrum for a detected source

• Producing a light curve and establishing variability of a source

VEGAS does this in five stages as given in the overview below. Each stage is designed as an

executable of its own and has as its input and output CERN ROOT (Antcheva et al., 2015) files.

ROOT libraries are also heavily used in the C++ infrastructure of VEGAS. For more detail see

Cogan (2007) and Cogan (2006).

• Stage 1: This stage is operated separately on calibration runs and data runs. It calcu-

lates various hardware and calibration dependent quantities, some of which are read from

an online database. These quantities are then stored in a way that makes them easily

accessible to later stages of analysis.
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• Stage 2: Calculates analysis related parameters from every event in the data. This in-

cludes, but is not limited to, Hillas parameters (geometrical characterization discussed

in Chapter 5). The calculation of parameters is nontrivial and involves the need to filter

out noises, both ambient and electronic. For example, image cleaning has been exten-

sively studied and is still being researched (for example, Shayduk (2013)). Applications

of calculated parameters are left to later stages.

• Stage 3 no longer exists and has been combined with (into) Stage 2.

• Stage 4: The parameters that were calculated in Stage 2 are used to reconstruct the phys-

ical characteristics of the primary. These include the energy, direction, and core position

(the “landing” position of the primary if it were to survive atmospheric interactions).

While most events we observe are induced by charged cosmic rays, the reconstruction

techniques employed here are designed for gamma-ray events and only work properly for

those events. We attempt to filter out as many cosmic-ray events as possible in Stage 5.

• Stage 5: In this stage we attempt to filter out a large number of cosmic-ray events, using

parameters obtained in Stage 2, as well as some parameters that are byproducts of Stage

4 reconstruction (the latter is only true for some types of filtering techniques, especially

newer and more experimental).

• Stage 6: This final stage uses the events that passed the Stage 5 filtering procedure to

produce meaningful scientific content. The most simple tools can plot a map of all counts

received, and calculate the significance associated with an observation. There are many

statistical tools employed in this stage, and more are being developed in recent years. In

Chapter 4 we will discuss an implementation of the author’s method for detecting and

characterizing transient sources which has been implemented in this stage.
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In this work we will discuss the methods in stages 4 and 6 often, as these are related to the

author’s work in improving IACT analysis. The author has worked extensively on both stages.

1.5.2 Monte Carlo simulations

Many of the techniques we use rely on the results of Monte Carlo simulations of gamma-ray

events. This need arises out of the obviously complex and probabilistic nature of extensive air

shower development, as well as the complexity of the noise involved in imaging those showers

(including details such as mirror roughness and slight misalignment of mirror panels). Inde-

pendent simulation packages have been developed for this purpose (Maier, 2007). The EAS

simulator and the detector simulator are generally developed separately, and a few separate

options exist for each.

When estimating a physical parameter of the primary, simulations can be used to construct

lookup tables: tables that map parameters of the telescope images into the required physical pa-

rameter. For example, a lookup table is used to reconstruct the energy of the primary. Choosing

which shower parameters to use as inputs for the lookup tables relies on physical arguments,

intuition, and trial-and-error. In recent years, an inclusion of more sophisticated multivariate

techniques is taking place. Techniques such as Boosted Decision Trees, Neural Networks and

more are supposed to be superior to the construction of tables when used under the right cir-

cumstances, with their parameters tuned correctly (see, for example, Fiasson et al. (2010)).

Sometimes there is a favorable analytical technique for reconstruction of a physical parameter.

One such example is the geometrical method for direction reconstruction, which we discuss in

Chapter 5.
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1.5.3 Significance calculations, best-fit amplitudes, and upper limits

The first robust way of statistically inferring the existence of sources and finding their am-

plitudes was published by Li & Ma in 1983 (Li and Ma, 1983), using maximum likelihood

estimation. At the time, angular reconstruction was not available and all observations operated

in the ON/OFF mode, where the telescopes observe a source for a time Ton and then observe a

nearby background region for a time To f f . Due to obvious reasons such as the desire to collect

statistics on a source, the typical observation spent more time on the source than on the back-

ground region. Li and Ma define a parameter α = Ton
To f f

, where typically α > 1. Denoting the

number of events found within the ON and OFF observations as Non and No f f respectively, they

find the Gaussian significance to be (Li and Ma (1983), Eq. 17):

S =
√

2

{
Non ln

[
1+α

α

( Non

Non +No f f

)]
+No f f ln

[
(1+α)

( No f f

Non +No f f

)]}1/2

(1.1)

We will derive this expression using a somewhat different notation in Chapter 3, and later in the

same chapter expand on this technique for detecting time-varying sources.

As IACTs developed angular reconstruction, the possibility of extracting the background from

the field of view, by either using reflected regions or a ring background region, has changed the

meaning of this test statistic. For one, usually α < 1, but more importantly, the estimation of

the “observing time” is done on an exposure basis. If one uses n reflected regions, then α = 1
n ,

assuming all reflected regions indeed have the same exposure to background as the source region

(thus neglecting differences in, for example, elevation, and absorbing small systematic errors).

The exposure for a ring background is calculated using the acceptance curve. These calculations

are all performed in stage 6 of VEGAS.
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One important note about finding source fluences, is that the likelihood model devised by Li &

Ma finds the best-fit source fluence (which we consider valid only for a 5 sigma detection) to be

a very straightforward F = Non−αNo f f , where we use units based on counts observed by the

array. The fluence can be converted into physical units by introducing the effective area of the

telescope array. In Chapter 3 we will see that the time-dependent generalization we derive does

not appear to have an analytical solution for the amplitude of emission or fluence: they can only

be found using numerical methods.

In the absence of a detection, upper limits can be interpreted using Bayesian or frequentist prob-

ability (Röver et al., 2011). The standard way to obtain upper limits in IACT observations has

been strictly frequentist using a Neyman construction. There is some freedom in constructing

such upper limits. The two standard approaches are described in Feldman and Cousins (1998)

and Rolke et al. (2005).

1.5.4 Background rejection, and different levels of cuts

As previously discussed, the cosmic-ray background is the dominant component of almost every

IACT observation except for when observing the brightest gamma-ray sources. This fact is true

even when one only considers the angular region around the source which is bounded by the

PSF of the instrument. While this is the case regardless of the quality of background rejection,

it makes reducing the background a very crucial task for the sensitivity of IACTs.

The important separation parameter which is typically used to determine whether an EAS event

is signal or background is the angular width of the image. In fact this is typically calculated
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scaled by the expectation of how large an imaged EAS is supposed to be, relative to its bright-

ness and reconstructed impact distance–where the expected width is found in a large sample of

Monte Carlo simulations. This ratio is calculated for each telescope that has a legible image,

and the mean is computed. This parameter is termed mean scaled width (MSW). We’ve seen in

§ 1.2.1 that wider showers are much more likely to be background events.

Other parameters that are typically used to distinguish signal to background are the length of

the imaged shower as well as the reconstructed height of first interaction. There has been a sig-

nificant amount of work on improving background rejection, both by including new separation

parameters, and by using machine learning algorithms (e.g., Krause et al. (2017)).

The traditional technique for background rejection is make a “cut” on the value of the separation

parameters, such as MSW, allowing only EAS events with less (or more) than that value to pass

through the analysis. These cuts are studied extensively on gamma-ray sources with various

levels of spectral steepness, and designed accordingly to perform optimally for such sources.

VEGAS has three such standardized sets of cuts, termed soft (optimized for photon index3 of

around −3.5 to −4), medium (−2.5 to −3), and hard cuts (harder spectrum).

One reason that spectral steepness is so important for determining cuts is that the rate of cosmic-

ray events drops very rapidly with increasing energy. A source which is expected to have a hard

spectrum, can be much more easily detected by cutting away faint images, even though that is

likely to filter out some signal events. Thus, for hard sources the brightness of an image can be

3The photon index is a measure of how rapidly the photon flux of a source declines as a function of energy,
using a power law approximation (which is often a good approximation in VHE astronomy). Thus the differential
flux of incoming photons per unit energy, dN/dE, is approximated by Aeα , where A is the amplitude and α the
photon index.
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used itself as a quasi-separation parameter. Note that the signal events being filtered by a hard-

source analysis are mostly low energy events (with a low image brightness), therefore causing

a significant increase in the energy threshold of the analysis.

1.5.5 Sensitivity

Since the historic detection of the Crab Nebula, a very bright TeV emitter, IACT arrays have

become capable of detecting much fainter sources. VERITAS can now detect the Crab Nebula

at a 5-sigma level in about a minute of observation. Instruments with a well known background

rate would be able to detect fainter sources with longer observing duration in proportionality to

1/
√

T , however as we’ve seen this is not case for the Li & Ma scenario. The simple square-

root-of-time formula becomes a better approximation with longer observing durations.

In Figure 1.10 we show various plots related to the sensitivity of VERITAS. All plots assume

a high elevation and good weather conditions.4 In the bottom plot, one can especially note the

effect of the cuts on the energy threshold of the instrument. Hard cuts make it very difficult to

detect emission at below 400 GeV, while soft cuts can detect emission at around 100 GeV, sac-

rificing sensitivity at higher energies. One can also note the very large effective area associated

with the experiment, which is the biggest advantage IACT arrays have over satellites; this is a

direct result of the typically-large Cherenkov light pool on the ground as discussed earlier.

VERITAS has an angular resolution that depends on the cuts used, the energy of the shower,

and the elevation of observing. It is usually around 0.1 degrees. We will discuss the topic of

angular reconstruction in detail in Chapter 5.

4Low elevation observing affects the sensitivity of the instrument significantly; for more details on how these
conditions and other details may affect sensitivity we suggest Park (2015).
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FIGURE 1.10: Various plots related to the sensitivity of VERITAS. All plots assume a high
elevation observation as well as good weather conditions. Top/Left: A plot of the time-to-
detection against source flux. Top/Right: The effective area of the detector as a function of
energy. Bottom: Sensitivity is plotted against energy for three standardized sets of cuts: soft,
medium, and hard. One can see the strong impact the cuts have at the lowest energies. For
example, at the lowest energy bin medium and hard cuts essentially block both the signal and the
noise, resulting in an increased threshold for the energy. From the official VERITAS webpage:

http://veritas.sao.arizona.edu.
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1.6 Beyond IACTs: the high energy sky

We will briefly describe some instruments that complement TeV observations by IACTs. These

instruments are sensitive to radiation in nearby energy bands, and can be used to complement

scientific results, as well as to trigger an IACT observation–which is usually the case in gamma-

ray burst observations (see § 2.4).

We first note that other IACT arrays are currently in operation, which have comparable sen-

sitivity to VERITAS. Those are H.E.S.S. (Hinton, 2004) and MAGIC (Cortina et al., 2009),

operating out of Khomas Highland of Namibia and the Canary Islands of Spain, respectively.

There is also FACT (Bretz et al., 2013), a Cherenkov Telescope based on silicon photon de-

tectors, thus being versatile enough to operate in various conditions, including during bright

moonlight. FACT was designed in part to test the feasibility of silicon detectors for the next

generation IACT array, the Cherenkov Telescope Array (CTA). CTA will operate out of two

sites and will have a sensitivity exceeding current generation IACT arrays by about an order

of magnitude, as well as other advantages such as a wider field of view and a lower energy

threshold (Actis et al., 2011).

1.6.1 The Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope (McEnery et al., 2012) is a space observatory that was

launched in 2008 with two detectors on board, the Large Area Telescope (LAT) (Atwood et al.,

2009) and Gamma-ray Burst Monitor (GBM) (Meegan et al., 2009).



IACT Technique 30

LAT is based on the pair-conversion technique, whereby layers of thin high-Z metal induce a

crossing gamma-ray to produce an electron-positron pair. A particle detector and calorimeter

can then find the pair and estimate the energy of the primary gamma-ray. LAT is sensitive at

energies of approximately 20 MeV to 300 GeV. The angular resolution is several degrees at the

lowest energies and improves to about 0.1 degrees at the highest energies. The effective area

is limited by the size of the detector, to about one square meter. LAT covers about 20% of the

sky at any given moment, and the entire observatory rotates in a way that exposes the entire sky

every two orbits, or around three hours (the LAT is at near-earth orbit with a period of about 90

minutes).

GBM, in contrast, is designed to observe the entire visible sky at any moment. It is sensitive in

the energy range of about 8 keV to 40 MeV, and ideally suited to search for gamma-ray bursts.

It computes their position based on relative intensities in sensors that are oriented in different

directions, thus having rather crude localization of about 5 degrees. We note that while GBM

is a major contributor to alerts that trigger a VERITAS observation of a burst, the Swift space

observatory5 (Gehrels et al., 2004) can often deliver better localization that is suited for an IACT

field of view. VERITAS will follow alerts generated by both observatories and a few others,

with an expanding list of instruments that are sending burst alerts and locations through the

GRB Coordinates Network (GCN) (Barthelmy, 2000).

One last note, is that while the instrument is configured to allow LAT to observe a source

continuously, if not blocked by the Earth, this is usually not used and is reserved for the most

5The Swift space observatory has three detectors on board: The Burst Alert Telescope (BAT) which covers
a large fraction of the sky and can locate bursts with a good accuracy of a few arc-minutes, using hard X-ray
detectors. The X-ray telescope provides better spectral and temporal information at softer X-rays, as well as a more
accurate position of a few arc-seconds. The Ultraviolet/Optical Telescope (UVOT) can detect a GRB afterglow at
optical and ultraviolet energies.
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bright or otherwise interesting gamma-ray bursts.

1.6.2 High Altitude Water Cherenkov (HAWC) observatory

The High Altitude Water Cherenkov (HAWC) observatory has become recently operational

(Smith, 2015), replacing its much less sensitive predecessor, Milagro. HAWC consists of 300

water-filled tanks, designed to induce and detect Cherenkov radiation by particles from exten-

sive air showers that survived the atmosphere to the detector, at an altitude of 4100 meters in

Sierra Negra, Mexico (DeYoung, 2012). Each water tank contains 4 PMTs for this purpose.

The observatory is most sensitive at energies above 1 TeV, since a lower-energy EAS is unlikely

to survive to its altitude. At the highest energies of about 10 TeV, the angular resolution is

between 0.1 and 0.2 degrees. As a water Cherenkov observatory, HAWC can operate during

sunlight and essentially any other ambient conditions, therefore being most suitable for detect-

ing a nearby, powerful GRB. To date, there has not been any detection of a gamma-ray burst by

a water Cherenkov observatory.
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Gamma-ray bursts

2.1 Introduction

Gamma-ray bursts (GRBs) were discovered accidentally in the 1960s by the Vela satellites

(Klebesadel et al., 1973), which were originally intentioned for the monitoring of nuclear tests

in the atmosphere and in space. While much progress has since been made on understanding

their origin–which is attributed to supernovae and the merging of compact objects–the internal

mechanism responsible for the GRB initial radiation output (also known as the prompt radiation)

is still largely unknown (Kumar and Zhang, 2015). This radiation is characterized by intense

and irregular behaviour over a short time period; it tends to be composed of multiple pulses

without clear periodicity. The prompt emission is generally found in the keV-MeV range, but

GeV emission has been observed by Fermi-LAT for several bursts (Ackermann et al., 2013).

The energy output in this prompt phase is typically around 1051 erg, making them the most

luminous events known in the universe. In Figure 2.1, we show a collection of prompt GRB

32
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FIGURE 2.1: A collection of GRB light curves observed by the Burst and Transient Source
Experiment (BATSE), composed by Daniel Perley (2009). This collection shows the versatile

nature of these light curves, as well as the rapid variations that occur within most.

light curves observed by the Burst and Transient Source Experiment (BATSE) (Paciesas et al.,

1999).
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GRBs exhibit an afterglow which has been observed in radio, optical, X-ray, and GeV gamma-

rays (Panaitescu and Kumar, 2001). Both the optical and gamma-ray afterglow fluxes appear to

temporally decay as a power-law. In particular, studies of Fermi-LAT light curves in the GeV

energy range show the decay index to cluster around -1 (Ackermann et al., 2013). The afterglow

radiation is produced by the relativistic ejecta of the burst interacting with the ambient medium,

which can lead to a significant amount of TeV emission through inverse Compton scattering, as

we will discuss later in this chapter.

Gamma-ray burst sky coordinates have been observed by imaging atmospheric Cherenkov tele-

scope arrays (i.e., the burst locations were followed up after satellite detection, see § 2.4), and

are considered a high-priority target. None has been detected by any IACT array as of this

date (e.g., Acciari et al. (2011)). Water Cherenkov detectors which are most sensitive at ener-

gies above ∼10-TeV have also failed to detect any of the bursts that were in their field of view

(Abdo et al., 2007; Atkins et al., 2004).

A detection of VHE emission from a gamma-ray burst can be used for probing some funda-

mental physics questions. For example, GRBs may provide one of the best opportunities to

detect a possible change in the speed of light at energies close to the Planck scale due to their

cosmological distance and rapid variability. This Lorentz-invariance violation is predicted by

some quantum gravity models (Abdo et al., 2009; Amelino-Camelia et al., 1998). A VHE de-

tection would be particularly useful since any possible time-delay between photons within an

energy band would be much greater at ∼1-TeV compared to ∼1-GeV. This is especially true

of quantum gravity models that predict a lowest-order quadratic dependence of velocity on the

energy difference.
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Gamma-ray bursts can also be used to probe cosmological models, to the extent that even a

mere detection can provide information about star formation rates and their properties in the

early universe (Lamb and Reichart, 2000). While more difficult to achieve, GRBs can be used

to study cosmology in the context of the ΛCDM model, but a better understanding of their

physics is required because they are not uniform enough to serve as standard candles (Liang

and Zhang, 2005).

In this chapter, we will cover some of the basic observed properties of GRBs. Later, we will

discuss the VERITAS observing program, as well as a model that we have used to interpret

the results of our observations. The application of the model to one of the VERITAS GRB

observations will be discussed in Chapter 6.

2.2 Evidence for two cosmological GRB classes

As high quality information about gamma-ray bursts was collected by the Burst and Transient

Experiment (BATSE) (Pačiesas and S., 2004), a couple of properties of GRBs as a group were

made evident. Their distribution in the sky was observed to be statistically uniform (Figure 2.2),

indicating a cosmological origin and contradicting some early models which assumed a more

local origin in order to explain the typically large observed energy fluences (Ruderman, 1975).

One other feature that was very clear from early on observations of GRBs is that they were

divided into two groups, short (< 2s) and long (> 2s). This division appears most distinctly

when a scatter plot is made of the spectral hardness and the burst duration, as shown in Figure

2.3. Burst duration is often defined as the time during which 90% or 50% of the prompt radiation

is received, denoted as T90 and T50, respectively. The spectral hardness is defined in somewhat
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FIGURE 2.2: The cosmological origin of GRBs, from Paczynski (1995). An unbiased sample
of 585 BATSE bursts are plotted in galactic coordinates, demonstrating isotropy and indicating

that their origin is cosmological.

arbitrary units, and in the case of Figure 2.3 it is related to the sensors on board BATSE. In

Kouveliotou et al. (1993), the existence of the two separate groups is found to be statistically

significant, and this result has held on to further investigation.

Later studies involving a satellite observing prompt emission and triggering an observation of

a corresponding optical afterglow, have given us a redshift distribution, which is somewhat

biased by instrument selection effects. Nonetheless, some studies attempting to correct for

the bias have concluded that the redshift distribution roughly follows the star formation rate

(Coward et al., 2012), but without much confidence at the highest redshifts. In any case, it

is very clear that nearby bursts are more likely to be detected, but despite that fact even the

observed distributions tend to be quite cosmological, with a typical redshift > 1.
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FIGURE 2.3: Observations of two separate GRB classes, from Kouveliotou et al. (1993). Right:
A scatter plot of T90 vs hardness ratio for BATSE bursts. The hardness ratio is (arbitrarily)
defined as a relative number of counts observed by different BATSE sensors, the 100-300 keV
and 50-100 keV. Left: Histogram of hardness ratio, separated into short (< 2s, dotted line) and

long (> 2s, solid line) bursts.

2.3 Origin of GRBs

Some long gamma-ray bursts have been associated with a corresponding supernova, for exam-

ple GRB980425 (Galama et al., 1998) and GRB030329 (Hjorth et al., 2003). However, some

nearby gamma-ray bursts triggered a special search for an associated supernova, which was not

found, strongly suggesting that at least some long GRBs are of a different origin (for example,

Gal-Yam et al. (2006)). This has led to speculation that nearby GRBs may encompass addi-

tional processes, but the distant ones are generally supernova related. Still, the exact type of

supernova required–and whether it needs to occur in a binary system or a single rapidly rotating

star–is unclear (Davies et al., 2007).
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FIGURE 2.4: A sample of 147 redshifts from Swift observations, from (Coward et al., 2012).
While this sample is likely biased towards lower redshifts due to selections effects, it still shows

a strong majority of detected bursts at z > 1.

The origin of short gamma-ray bursts is even more speculative. Mergers of compact objects are

considered to be the leading contenders (Nakar, 2007). The merger could involve two neutron

stars or a neutron star and a black hole. This belief stems at least partially from the association

of some short GRBs with early-type galaxies (e.g. Gehrels et al. (2005)).

In Bromberg et al. (2012), it is argued that the distinction between short and long gamma-ray

bursts is too superficial; it also lends strong support to the “collapsar” model of long GRBs.

In the collapsar model, long gamma-ray bursts are a result of an imploding core of a dense
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star, creating a jet which later has to break through the remaining envelope. The key insight is

that the activity time of the core is rather independent of the amount of material the jet has to

break through. Therefore, one would expect to find the following features in the distribution of

gamma-ray burst durations:

• For short times, the probability (distribution) should be essentially constant with respect

to duration. Denote the time the jet takes to break though the envelope as tb, and the

engine activity time is ta. Both have probability distributions, denoted as p(tb) and p(ta):

the former is likely not to vary much in general and the latter will vary on timescales

corresponding to the typical long burst duration (around 100 seconds). Therefore, p(ta)−

p(tb) should be fairly constant on few-second timescales. Note that the outcome p(ta)−

p(tb)< 0 corresponds to “failed” bursts, which are likely to be common.

• Over a longer time scale, the distribution of burst duration when ta� tb will be essentially

dominated by the engine activity time, and show the corresponding features.

We note that the difficulty of observing a constant probability distribution in early durations is

due to contamination by short gamma-ray bursts. In Bromberg et al. (2012), this is handled

by examining the duration distribution after applying a filter on spectral hardness, which was

clearly observed to be a feature of short gamma-ray bursts. In Figure 2.5, we show a plot

demonstrating the probability distribution after such filtering. It serves as convincing evidence

for both the collapsar model and the need to reconsider the standard short/long classification

(because at least some short-duration bursts are of a collapsar origin).
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FIGURE 2.5: Distributions of burst durations (as defined by T90). The following distributions
are plotted without filtering: BATSE (red), Swift (blue), and Fermi GBM (green). In addition,
a BATSE distribution with a filter requiring a hardness ratio of less than 2.6, is plotted in ma-
genta. Note that while the distributions are plotted on a log axis, the values themselves are from
a probability distribution in linear time (as opposed to the standard way of plotting such distri-
butions). Swift values are divided by 5 and Fermi by 15, for clarity purposes. From Bromberg

et al. (2012).

2.4 On the VERITAS GRB observing program

When VERITAS receives a burst alert through the GRB Coordinates Network (GCN), the on-

site observers are prompted to slew the telescopes to the burst position barring any constraints
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such as the position of the Moon or the elevation of the burst. The response time from trigger

to observation, which involves arrival time for the alert, response by VERITAS observers and

telescope slewing, is usually on the order of a few minutes (Acciari et al., 2011). Previous

observations of Swift GRBs by VERITAS placed limits on the possibility of particularly strong

VHE emission from those bursts (Acciari et al., 2011).

At the time of this work, VERITAS has observed 159 gamma-ray burst positions, with 50 of

those within 180s of satellite trigger time. Simultaneous observations exist for 96 bursts with

Swift-BAT, 93 with Fermi-GBM and 12 with Fermi-LAT.

2.4.1 Expectations of VHE emission detectable by VERITAS

While the exact nature of the prompt radiation is unknown, and neither the afterglow nor the

prompt emission were ever detected in very high energies (more than ∼ 100 GeV), there are

reasons to be optimistic. The effective area of IACT arrays is very large, being about four to

five orders of magnitude greater than satellites, with a manageable background level. Fermi-

LAT has detected GeV emission from multiple bursts (Ackermann et al., 2013). In Aliu et al.

(2014), the Fermi-LAT emission for a few bright bursts is spectrally extrapolated with no cut-

off. This is used to estimate detectability by VERITAS with extremely encouraging results, as

shown in Figure 2.6.1

IACTs have some obvious limitations in detecting gamma-ray bursts, which are probably re-

sponsible to the lack of detection as of yet:

1For example, at early times GRB090510 would produce an expected photon rate or about 10 per second,
compared to a background rate of about 1 count per minute.
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• The cosmological distance of bursts, while not a major impediment for satellite observa-

tions,2 significantly attenuates VHE gamma-rays due to pair production with the extra-

galactic background light (for example, Gilmore et al. (2009)). One hopes to observe one

of the more nearby bursts, which can occur at distances without overwhelming absorption

by the extragalactic background light (recall that this absorption is taken into account in

Figure 2.6).

• IACTs are not in operation most of the time. The sensitive equipment involved in IACTs

is often shut down during rain, lightning, and even moonlight (the shut down is also

partly related to usefulness of data taken in such conditions). The Sun needs to go signifi-

cantly below the horizon before it allows low enough ambient light levels for observation.

Cloudy conditions can significantly impede the quality of the data. This leaves only a

small fraction of the year as observable, typically around 1100-1400 hours per year.

• IACTs function best when they observe a high elevation source, for reasons that are

largely related to atmospheric absorption of Cherenkov light. VERITAS will observe

a burst as low as 20 degrees in elevation, but in such cases some aspects of IACT perfor-

mance are suboptimal.

• An IACT field of view is usually only a few degrees in diameter (typically 3-5◦), there-

fore requiring the telescopes to slew to a source. This slewing time can be substantial,

especially when added to the time it takes a GCN alert to get processed and arrive at

Earth. In Acciari et al. (2011), it is shown that the time from satellite trigger to initiation

of VERITAS observation is typically no more than a few minutes.

2Satellite observations are sensitive at much lower photon energies.
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• An additional constraint related to the narrow field of view is that some satellites have

large uncertainties in their burst positioning, at least initially. When that is larger than the

IACT field of view, performance often has to be sacrificed in favor of coverage, resulting

in searching patterns for the telescopes. Sometimes, the center of the reconstructed satel-

lite position is used, and one hopes to be fortunate enough to have the burst within the

field of view.

One can note that all of the constraints can be mitigated in the case of a fortunate observation.

A low-redshift, high-elevation, good weather burst, with an accurate satellite position (and with

a reasonable IACT slewing time) is certainly possible. Based on the results in Figure 2.6,

a detection of such a source would be highly likely, and a non-detection would be a strong

statement of its own. In Chapter 6, we discuss the case of GRB 150323A, a VERITAS-observed

burst that came closest to satisfying all of the requirements above, and which was not detected.

2.5 Ingredients in a theory of the afterglow

As mentioned in the introduction, there is much ongoing speculation about the central engine

and processes that lead to the prompt emission of GRBs. The afterglow, however, is better

understood, and involves some basic ingredients that are shared by all plausible central engine

theories (Kumar and Zhang, 2015). Experimentally, the afterglow is often seen for days, much

longer than the typical time scale of even a long GRB at ∼ 100 seconds. It is important to

explore this topic further, particularly because IACT observations typically require a telescope

slewing time which puts the most plausible observed VHE emission in the afterglow phase. On

that note, the Fermi-LAT GRB catalog (Ackermann et al., 2013), which provides the closest
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FIGURE 2.6: Predicted VERITAS photon rates form four bright Fermi-LAT bursts. The mod-
elling is based on power-law extrapolation from the Fermi-LAT spectrum, and includes EBL
absorption based on the GeV absorption model in Gilmore et al. (2009). A 70 degree eleva-
tion at the time of observing is assumed. The VERITAS background rate is on the order of
one count per minute. Each bin corresponds to at least three Gaussian standard deviations in
expected significance (given the approximately known VERITAS background rate). From Aliu

et al. (2014).

observed energy range to IACTs, indicates that most GeV emission is generally seen during the

afterglow. One would expect the same to be true at TeV energies.

We will follow the treatment given by Kumar and Zhang (2015), citing articles with more detail

when necessary.

2.5.1 Blast wave dynamics

After the activity of the central engine, every scenario would lead to a jet and an accompanying

blast wave expanding through the circum-burst medium, or CBM (this medium could be a

stellar-wind, or the interstellar medium). The large amounts of energy output by the central

engine would suggest a relativistically moving blast wave. A solution to the dynamics of the
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blast wave was derived in Blandford and McKee (1976) in the context of AGNs. Here we will

state only the essential parts of the solution which are required for understanding the afterglow.

We denote the Lorentz factor of the shock front as Γ = Γ(R), which will generally slow down

with increasing radius (R) relative to the center of explosion, as it sweeps the material of the

CBM. From the point of view of the shocked fluid, as seen in Figure 2.7, the upstream particles

of the CBM are travelling at Lorentz factor Γ in its direction. As they collide with the shock

front, their direction of motion is randomized, but their kinetic energy is nearly unchanged. The

shock also compresses the particle density by a factor of 4. The kinetic energy of an upstream

particle of mass m is given by Γmc2. This kinetic energy is then converted into thermal energy,

as the directions are randomized. Lorentz transforming back into the lab (progenitor) frame, the

mean energy of a downstream particle is Γ2mc2.

We can now use energy conservation arguments to describe the evolution of the blast wave

under simple conditions at a large radius. For example, in the absence of prompt radiation (at a

time when it has already passed), we compute in the lab frame the energy of the swept up fluid

being the swept up mass times the energy per unit mass (Γ2c2). This is given by:

Ekin = Γ
2c2
∫

4πR2
ρ(R)dR. (2.1)

where ρ(R) ∝ R−k stands for the density of the CBM. For the case of the interstellar medium

(ISM) k = 0, and for a stellar wind approximately k = 2 (if the mass loss rate of the progenitor

was fairly constant in time).

By requiring the energy to be conserved, we find for the ISM case Γ ∝ R−3/2 and for a stellar

wind Γ ∝ R−1/2.
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FIGURE 2.7: From the frame of reference of the shock, the upstream particles travel at Γ. The
collision randomizes their direction of motion but keeps its magnitude nearly unchanged. The
shock also compresses the density by a factor of 4 in the frame of the shocked plasma. From

Kumar and Zhang (2015).

We would also like to estimate the evolution of Γ in the frame of the astronomical observer.3

The blast wave is moving towards the observer almost at the speed of light, the difference

3Here we refer to the time measured by an astronomer on Earth, rather than the time coordinate of a relativistic
frame of reference.
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being c− v = c−
√

(c2− c2

Γ2 ) ≈ c
2Γ2 , where the last (Taylor) approximation relies on the ultra-

relativistic Lorentz factors expected in the GRB environment.

So dR ∝ Γ2dtobs, and for the stellar wind:

tobs ∝

∫ 1
Γ2 dR

=
∫

RdR

∝ R2.

(2.2)

Similarly, we find for the ISM: tobs ∝ R4.

To summarize, in the case of a stellar wind we found Γ ∝ R−1/2 ∝ t−1/4
obs , and for the ISM

Γ ∝ R−3/2 ∝ t−3/8
obs , where tobs corresponds to an astronomer’s clock on Earth.

The structure of the blast wave at early times contains a reverse shock in addition to the forward

shock we have already described. In the case of a weak magnetic field of the GRB ejecta, the

reverse shock decelerates the ejecta. We show the full structure of the blast wave in Figure

2.8. In the figure, the forward shock is the boundary between regions 1 and 2, and the reverse

shock the boundary between regions 3 and 4. For a full derivation of the blast wave dynamics

with an arbitrary magnetization, see (Zhang and Kobayashi, 2005). The reverse shock has an

identifiable signature in X-ray and radio light curves, which in particular has been found for

GRB 130427A4 (Laskar et al., 2013). Studies show the typical Γ of the blast wave at early

times is between 100 and 1000 (e.g., Tang et al. (2015)), indeed highly relativistic.

4GRB 130427A was a record-setting burst in its fluence, largely due to its proximity (Maselli et al., 2014). It
was detected by a large number of instruments, allowing a number of interesting analyses to be conducted.
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FIGURE 2.8: Structure of the blast wave and jet in an early snapshot (while the reverse shock
is still active). Region 1: the unshocked CBM yet to be affected by the blast wave. Region
2: the shocked CBM affected by the forward shock. Region 3: GRB-jet material affected by
the reverse shock, with the same Lorentz factor as region 2, but different density. Region 4:
GRB-jet unaffected by either shock. Boundary btw. 1&2: forward shock front. Boundary
btw. 2&3: surface of density discontinuity. Boundary btw. 3&4: reverse shock front. From

Kumar and Zhang (2015).

2.5.2 Shock-related synchrotron and inverse Compton radiation

The emission coming from the blast wave is believed to be a result of synchrotron and inverse

Compton radiation. First, recall that electrons and nuclei in the CBM are thermalized by the

forward shock. In addition, electrons in the CBM (and possibly the GRB-ejecta) can be ac-

celerated by the forward and reverse shocks in a first order Fermi process, resulting in a high
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energy tail with a power-law distribution (Fermi, 1949; Gieseler and Jones, 2000). Magnetic

fields (amplified by the shock) cause the electrons to radiate synchrotron radiation. Inverse

Compton (IC) radiation results from upscattering of photons by the electrons in this power-law

distribution, or by CBM electrons that were simply thermalized by the shock front. The seed

photons for IC radiation can come from the central engine or from the synchrotron radiation of

the shocked CBM electrons, which in the latter case is named synchrotron self-Compton (SSC).

In Sari et al. (1998), the synchrotron spectrum of the the electrons is calculated in detail, assum-

ing a high energy electron power law. We will not delve into detail here, primarily because it is

unclear whether this high energy component is present in every shock (Sironi and Spitkovsky,

2011), and even when it is, it requires poorly understood parameters. We shift our focus to the

thermal population of electrons and its IC emission. As we shall see in the next section, it is a

process that can lead to significant VHE emission in the blast wave environment.

2.6 Modelling the TeV emission from gamma-ray bursts

2.6.1 Overview of the model

VHE emission from gamma-ray bursts has never been detected experimentally in spite of many

observations, but upper limits fail to conclusively rule out the possibility of such emission even

if comparable in energy to the prompt emission (we will describe the strongest upper limit we

are aware of in Chapter 6). The limitations that are likely responsible for the non-detection were

outlined in § 2.4.1; we reiterate that those do not correspond to faint intrinsic levels of emission.
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In Beloborodov et al. (2014), a model for the very high energy emission from GRB blast waves

is described. We believe this model is best suited to assess the VERITAS results which we will

present in the coming chapters, for a few reasons. First, the model has been shown to replicate

GeV light curves by Fermi-LAT to impressive precision (Hascoët et al., 2015; Vurm et al.,

2014). Second, the model does not rely on the uncertain parameters of the high-energy power-

law distribution of electrons. Third, the model is able to explain recurring features detected by

Fermi-LAT observations in GeV, as we will discuss below.

One of the key insights of the model is the infusion of electron-positron pairs into the CBM

by the prompt emission, and its effect on the intensity and spectral properties of both the syn-

chrotron and IC emission. The mechanism for pair creation involves prompt-emission photons

that overtake the blast wave, scatter off of the particles of the CBM, and then interact with other

prompt photons that were not scattered to produce pairs. While the density of CBM is relatively

low, the number of prompt photons is very large and allows for a significant number of pairs to

be created for each original electron in the CBM.

Therefore, the large amount of prompt radiation typically associated with a GRB implies a large

number of e± pairs for every original electron in the CBM. This ratio is termed the pair loading

ratio, and denoted by Z±. To precisely model the number of pairs, one also has to take into

account the “avalanche” effect whereby pairs that were already created scatter more photons,

leading to a higher rate of pair creation.

Another key aspect is the sharing of kinetic energy between protons and nuclei in the CBM with

the surrounding electrons and positrons as they cross the shock front. Simulations show about

30% of the energy is typically given to the leptons as the CBM becomes thermalized (Sironi and

Spitkovsky, 2011). This corresponds to a very large boost in the electron and positron thermal
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Lorentz factor, comparable to 0.3× mp
me

, or several hundred. The ratio is likely even larger,

depending on the composition of the CBM and the typical nuclei present. However, when large

number of e± pairs are present, they also share the energy of the shocked nuclei, which dampens

the electron Lorentz factor by about 1
Z±

.

Thus the high energy (& 1 GeV) IC emission will derive from the original electron population

as well as the e± pairs. As R increases, the prompt radiation density decreases, and the number

of pairs declines significantly. This allows a higher Lorentz factor and increases the IC energy.

Under typical conditions, peak TeV emission will happen when Z± ≈ 1.

This model goes further and takes into account the pre-acceleration of the CBM by the prompt

radiation. Pre-acceleration results in less thermal energy being injected by the shock front,

as can be seen by considering the Lorentz factor of the pre-accelerated particles in the shock

frame of reference; the thermal Lorentz factor is about Γ

γpre
, where γpre corresponds to the

pre-accelerated Lorentz factor of the CBM. During the time of peak TeV emission, the pre-

acceleration appears to be a minor consideration in most cases.

Using numerical estimation, the authors are able to use the observational information on the

prompt light curve, in addition to the original blast wave energy and CBM density profile, to

model the evolution of all parameters of interest.5 They then predict the GeV and TeV emission

expected from the blast wave. In Figure 2.9, we show the example of this analysis for GRB

130427A. The plot shows the evolution of the parameters we discussed against the distance

from the center of explosion.

5The blast wave energy and CBM density profiles are generally fit to the data. In the case of a VHE detection,
they can be fit to Fermi-LAT data (if available) and then tested independently on the VHE data.
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FIGURE 2.9: A plot showing the evolution of parameters discussed in the text with distance
from the center of explosion, in the case of GRB 130427A. From Vurm et al. (2014).

There are some parameters in the plot which we did not define in the text so far. γin j stands for

the injected Lorentz factor of the CBM electrons and positrons, after considering their share of

the kinetic energy of the nuclei. This injected Lorentz factor can be seen to rise most dramat-

ically as Z± drops rapidly, indicating the best environment for TeV emission, before the blast
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wave further decelerates.6 The observer time, tobs is also calculated, assuming emission from a

typical beamed angle of 1
Γ

.

In Figure 2.10, we show the model compares well to the GeV light curve detected by Fermi-

LAT. After fitting for both the blast wave energy and wind density of the CBM, optical data is fit

with a single additional parameter, the forward shock magnetization–needed for a synchrotron

spectrum.

In addition to this fit result and several others (Hascoët et al., 2015), the explanatory power

of this model is significant: GeV light curves consistently show a small delay compared to

the prompt emission, with the GeV emission coinciding with the prompt phase (Ackermann

et al., 2013). The GeV light curve peaks quickly and then decays rather smoothly (unlike the

prompt emission). This model explains those features by the change in the pair-loading ratio. A

ratio that is too large at very small R, coupled with significant pre-acceleration, does not allow

the IC spectrum to reach GeV energies at the earliest times. The smooth decline of the light

curve can be explained by the arrival times of prompt photons that were IC scattered at different

locations, by a relatively smoothly-changing shocked electron-positron population. One can see

the rapidly rising, smoothly decaying nature of this model-produced light curve in Figure 2.10.

2.6.2 The TeV regime

We will now shift our focus to TeV, in a regime where Z± approaches one or so, indicating a

low pair loading and sufficient energy per thermal lepton. In addition to its relevance to this

6The burst discussed in Figures 2.9 and 2.10, GRB 130427A, has been observed by VERITAS. Observations
were late by about 24 hours to the trigger due to a full moon (Aliu et al., 2014), much after this optimal TeV time
predicted by this model. No emission was detected.
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FIGURE 2.10: Model-produced light curves for GRB 130427A, and comparison to optical and
gamma-ray data. Top: The GeV model is compared to Fermi-LAT data. Comparable TeV
energy output is expected with a delay relative to the GeV peak, but no data is available for
comparison on the time-scale of the plot. Bottom: Optical light curve is compared to data from
the optical observatories Gemini-North and Rapid Telescopes for Optical Response (RAPTOR).

From Vurm et al. (2014).
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work, another reason to consider this environment separately is that the conditions are simpler

and do not require much numerical modelling. This regime is described in detail in Vurm and

Beloborodov (2016), henceforth referred to as VB2016, and we will follow the same treatment

here.

Putting all the factors discussed earlier together, the Lorentz factor of the thermalized leptons

in the shocked fluid frame is given by γin j ≈
Γµeεemp

meZ±
, where εe is the fraction of shared energy

(≈ 0.3), and µe is the average number of protons in the CBM nuclei.

It can be shown that in the shocked fluid reference frame, electrons need to have a thermal

Lorentz factor on the order of 1000 or so to result in TeV emission in the lab frame (Beloborodov

et al., 2014). This is not out of the ordinary when Z± ≈ 1. This in turn implies that the prompt

∼ 1 MeV radiation upscattering from the electron is in the Klein-Nishina regime of IC scattering

(e.g., Weinberg (1995)). We thus are constrained to upscattered energies of VHE photons to

more or less γin jmec2. We pick up another factor of about 2Γ in the astronomical observer

frame (Earth) due to the ultra-relativistic Doppler factor. So overall we have for observed photon

energies:

Emax ≈ Γγin jmec2 ≈
Γ2c2µeεemp

Z±
. (2.3)

For the reasonable parameters of Γ = 100, Z± = 1, µe = 2, and εe = 0.3, we find Emax ≈ 5

TeV–well within the VERITAS energy range.

One parameter we would like to be more precise about is the Lorentz factor (Γ) at the time

when the pair loading ratio approaches one. The radius at which this happens is discussed in

Beloborodov (2002), where it is found to be:
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Rload ≈ 1.6×1016

√
EGRB

1053 erg
cm, (2.4)

where EGRB is the energy of the prompt emission. For an exact solution one would need to

know the spectral shape of the prompt radiation; the difference this would make is small in the

context of this discussion, because TeV emission will still begin but perhaps a bit later or earlier.

For the wind medium, Rload is large enough that we can rely on Equation 2.1. We first denote

the wind density as ρ(R) = A/R2, where typically for a Wolf-Rayet (WR) star A≈ 1011 g/cm.

We now compute the Lorentz factor at Rload:

Γload =
Ekin

4πc2ARload
(2.5)

If we use the same parameters as above, in addition to the standard WR density, and Ekin =

EGRB = 1053erg, then: Γ ≈ 50. This still implies the max IC energy is above a TeV, and the

majority of the emission thus in the VERITAS energy range (above 100 GeV). If there are

enough target photons for IC scattering, efficient IC cooling implies almost all the kinetic energy

is emitted in TeV–this condition is satisfied in a reasonable afterglow, as discussed more in detail

in VB2016.

In a typical observational scenario, EGRB and Rload are known, and the time corresponding to

Z± ≈ 1 is more than 100 seconds; therefore an observation in TeV is expected to be on target

on time, and to see a significant fraction of the energy Ekin in VHE radiation. This will be the

case for the VERITAS observation of GRB 150323A, which we will discuss in Chapter 6. If

Ekin is expected to be large enough to achieve detection, an upper limit is usually given by the
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requirement that Emax < 100 GeV, which will translate into a constraint on Γload , and therefore

Ekin/A.

For the ISM, the low CBM density will typically mean that Rload is much earlier than the radius

of highest luminosity (or energy loss rate by the blast wave), which will be achieved when the

thermalized energy given to the CBM is about equal to the initial kinetic energy:

RISM =

(
3Ekin

4πmpµenΓ2

)1/3

, (2.6)

where n is the particle density in the ISM, typically about one per cubic centimeter. In this case,

Γ will almost certainly be large enough to produce TeV emission. In some cases, the X-ray af-

terglow may not provide sufficient targets for IC emission at this stage, and thus the thermalized

electron population will cool adiabatically as it expands. This could mean a small fraction of

the kinetic energy will go into VHE emission, and a more careful analysis is warranted.

The TeV emission can suffer from opacity due to pair production which needs to be taken into

account. Around the produced TeV gamma-rays there are X-rays originating from the central

engine (during the prompt phase), and synchrotron X-rays produced by the thermal lepton pop-

ulation. The former is beamed during the typical radii we associate with TeV emission, and

thus provides an “escape” angle, allowing about 1
τ

TeV photons to escape, where τ is a typical

optical depth for non-escape angles. A detailed discussion can be found in VB2016.

VB2016 finds that for the ISM the opacity is typically sufficiently low to be negligible, and

that for the wind medium the situation is more complex. It is found that most GRBs that are

not transparent at Rload will become transparent later on while significant TeV emission is still
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taking place. However, a very dense CBM, or a very low kinetic energy budget, can prevent

TeV transparency altogether.

In conclusion, we find a strong possibility for detectable TeV emission, and discuss the rela-

tionship it has to the CBM density and kinetic energy of the ejecta. In the case of an upper limit,

a constraint can be derived on those physical parameters and compared to an expected range,

either from stellar astrophysics, or Fermi-LAT observations. An ideal scenario for testing our

understanding of afterglow physics would be a concurrent detection of GeV and TeV emission

by Fermi-LAT and an IACT array.



Chapter 3

Detecting and characterizing transient

gamma-ray sources: mathematical

derivation

3.1 Motivation

The standard statistical method for source detection used by IACTs was introduced by Li & Ma

in 1983. In their paper the following experiment is assumed (Li and Ma, 1983): an on-source

observation is made for time Ton and the instrument is later shifted to observe a nearby back-

ground region (off-source) for time To f f . A test statistic is derived using maximum likelihood

59
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theory,1 given the ratio of observing times α = Ton
To f f

and the number of counts seen during the

observations, Non and No f f .

As IACTs evolved the tools to reconstruct the direction of events, the Li & Ma test statistic was

generalized to the “wobble” analysis (Berge et al., 2007), where source (ON) and background

(OFF) observations are made at the same time, but reconstructed to different spatial regions.

The Ring Background Model (RBM) is one of the standard tools for such analysis and has been

successful in part due to its symmetrical nature that tends to cancel out systematic uncertainties

in the background rate (Berge et al., 2007).

The Li & Ma likelihood method and its extension to RBM analysis has been the standard ap-

proach for analysis of GRB observations by IACT arrays. It uses the fact that the final count

tally is Poisson distributed for both the source and background observations regardless of their

particular time behaviour during the observation. Time varying sources can thus be inferred

using this method, but any prior information on the time behaviour of these sources, as can be

provided by other experimental observations or theoretical predictions, cannot be included. In

this chapter as well as in Chapter 4, we will show that the inclusion of a priori temporal infor-

mation is an important tool in improving the sensitivity for GRB characterization and detection.

Generalizations of the Li & Ma method have been introduced in the past (for example, Klepser

(2012)). They generally address the need to detect extended sources, and may need to rely on

instrument response functions (IRFs) such as the point spread function or the energy recon-

struction matrix. To the best of our knowledge, no attempt has been made to explore a priori

1We will assume some familiarity with maximum likelihood estimation, and likelihood ratio tests. The same
techniques are used in the Li & Ma paper. See, for example, Pawitan (2013).
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knowledge of the source light curve. We believe this can be achieved in a straightforward ap-

proach since the time-stamping of events is much more accurate (to ∼ 1 µs) than the variability

of any plausible gamma-ray source.

The purpose of this chapter is to discuss such a method. It is introduced as a natural generaliza-

tion of the Ring Background Model, and as such it is also resistant to systematic uncertainties

and does not require detailed modelling of instrument response functions. Note that because

this likelihood method is not binned–or rather, the number of bins approaches infinity, as will

be described henceforth–it can capture rapidly varying light curves without the computational

complexity and limited resolution of binned methods.2 It also provides a simplified test statistic

for comparison with the Li & Ma method.

The next section begins with a derivation of the Li & Ma test statistic (§ 3.2.1), and then gives

a derivation of a simplified form of a time-dependent test statistic (§ 3.2.2). The simplification

relies on the assumption that the hadronic background rate is time-independent. In § 3.2.3 we

explore methods of dealing with a background rate that is possibly time-dependent. We describe

a modification of the Ring Background Model designed for adjusting to varying background

rates. We believe this is the most robust approach for GRB detection.

In the next chapter, we will describe results from Monte-Carlo simulations of gamma-ray

bursts. We will begin by simplifying the MCs by assuming that the background rate is time-

independent. Later, we explore the effect of a time-dependent background on the behaviour

2The exploration of an infinite binning of the likelihood method will prove to be interesting mathematically.
While one might expect the computational complexity of such a method to go up infinitely, it will in fact yield an
elegant result that through some mathematical manipulation will simplify the computational complexity compared
even to a simple binned method.
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of the test statistic under the null hypothesis. The results will show a strong improvement in

sensitivity achieved in a relatively simple way.

3.2 Mathematical derivation

3.2.1 The Li & Ma likelihood ratio

We will briefly derive the Li & Ma test statistic using average background and signal rates as

free parameters instead of counts (as used in the original paper). A more detailed discussion can

be found in the original paper (Li and Ma, 1983). Our choice will serve as a smoother transition

to the time dependent test statistic.

In the likelihood model, the OFF counts are only due to an unknown background rate whereas

the ON counts are explained by an unknown signal rate in addition to the same background rate.

Defining the time-averaged background and signal rates, b and s, in relation to the expected

number of counts: bTo f f =< No f f >, (s+b)Ton =< Non >, the likelihood is given by:

L = P(Non|< Non >)P
(
No f f |< No f f >

)
=

e−(s+b)Ton
(
(s+b)Ton

)Non

Non!
e−bTo f f

(
bTo f f

)No f f

No f f !
,

(3.1)

where P(N| < N >) stands for the probability of observing N counts in a Poisson distribution

of expected value < N >.
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To derive the null hypothesis likelihood, we simply set the signal rate to 0. In this case the

average background rate is b0 which completely accounts for all counts observed:

b0To f f =< No f f >; b0Ton =< Non >.

The null hypothesis likelihood is given by:

L0 =
e−b0Ton

(
b0Ton

)Non

Non!
e−b0To f f

(
b0To f f

)No f f

No f f !
. (3.2)

We find the maximum likelihood values for the rates by maximizing the likelihood of both the

null and signal models: b0 =
Non+No f f
Ton+To f f

; b =
No f f
To f f

; s = Non
Ton
− No f f

To f f
.

The likelihood ratio then simplifies into:

L0

L
=

(
b0

b+ s

)Non(b0

b

)No f f

. (3.3)

This expression can be compared to equation 14 in Li and Ma (1983). Wilks’ theorem (Wilks,

1938) allows us to describe the behaviour of the null likelihood ratio in the regime of high

counting statistics. If the null hypothesis is correct,

√
−2log

L0

L
is distributed as a Gaussian

variable with a standard deviation of 1.
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3.2.2 Time-dependent signal, time-independent background

To include arrival-time information, as may be advisable for known time-dependent signal, we

divide Ton into an arbitrarily large number of equal bins N of time ∆t, such that N∆t = Ton. We

will require the likelihood model to assign a probability for the number of counts within each

bin independently. This will cause the likelihood to approach 0 as N→ ∞ because it will factor

in the chance that the arrival times fall within specific bins, the number of which approaches

infinity. This behaviour will cancel out in the likelihood ratio test, and the resulting test-statistic

will converge nicely.

In the limit of large N, each time bin will include either a single event, or no events at all. Each

of the time bins is independently Poisson distributed with an expectation value approaching 0

as N increases.

Let b denote the time-independent background rate, and s(t) denote the time-dependent signal

rate. The background rate b is treated as an unknown to be optimized by maximum likelihood,

and there may be similar unknowns within s(t), such as the amplitude or, a “shape parameter”,

etc. For use of Wilks’ theorem we must require the signal and null likelihood models to be

nested, and thus s(t) must have at least one such unknown, most simply the amplitude. If use

of Wilks’s theorem is not possible, computer modelling can replace it, and the condition above

can be relaxed.

We denote the arrival times of signal (ON) counts as {ton} = (t1, t2...tnon). The likelihood is a

product of the Poisson probabilities for the count tally over all N time bins:
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L =

(
∏

ti=(∆t,2∆t,...N∆t)

[∆t(b+ s(ti))]{0,1}

{0,1}!
e−∆t(b+s(ti))

)
×

(bTo f f )
No f f

No f f !
e−bTo f f , (3.4)

where {0,1} are chosen depending on whether there are 0 or 1 events in the ti bin.

lim
N→∞

L = ∆tNon

(
∏

ti∈{ton}
(b+ s(ti))

)
(bTo f f )

No f f

No f f !
e−b(Ton+To f f )−

∫ Ton
0 dts(t). (3.5)

For the null hypothesis, we set s(t) = 0, and denote the background rate as b0, which will obey

essentially the same likelihood ratio as the Li & Ma null hypothesis, with only a change of

constants.

L0 = ∆tNonbNon
0

(b0To f f )
No f f

No f f !
e−b0(Ton+To f f ). (3.6)

Thus L0 is also maximized by: b0 =
Non+No f f
Ton+To f f

, giving

L0 = ∆tNonbNon
0

(b0To f f )
No f f

No f f !
e−(Non+No f f ). (3.7)
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The last equality follows from plugging in the exact form of b0 into the exponential. The

likelihood ratio is given by

L0

L
=

b
Non+No f f
0(

∏ti∈{ton}(b+ s(ti))
)

bNo f f
eb(Ton+To f f )+

∫ Ton
0 dt s(t)−(Non+No f f ). (3.8)

This ratio can be further simplified by exploring the connection between s(t) and b. To do so,

we must find the maximum of L or equivalently of logL . For the purpose of GRB detection

we will leave only one free parameter, the amplitude, in the signal time profile, s(t) ∆
= θ f (t).

Where f (t) is a known time profile of the observed burst, typically 1/t (Ackermann et al., 2013).

This choice reflects the certainty of the flux decaying rapidly (usually as a power-law), and the

uncertainty about the amplitude of VHE emission.

We require both partial derivatives of logL to vanish at the maximum of the likelihood func-

tion:

∂ logL

∂b
=

No f f

b
+ ∑

ti∈{ton}

1
b+θ f (ti)

− (Ton +To f f ) = 0, (3.9)

∂ logL

∂θ
= ∑

ti∈{ton}

f (ti)
b+θ f (ti)

−
∫ Ton

0
dt f (t) = 0. (3.10)



Time-dependent likelihood: derivation 67

An important identity is derived by noting that at the maximum of the likelihood function we

can assert that b∂ logL
∂b +θ

∂ logL
∂θ

= 0.

b(Ton +To f f )+
∫ Ton

0
dt s(t) = Non +No f f . (3.11)

The above relation leads to the cancellation of the exponential in the test statistic. It also allows

a substitution of b =
Non+No f f−θ

∫ Ton
0 dt f (t)

Ton+To f f
into Equation 3.10, which results in a polynomial

equation of order Non for θ . This problem can be solved using a computer grid search, or any

other suitable optimization algorithm to find a maximum likelihood θ .3 Due to the condition

above, any grid search will only need to search over values of the amplitude, θ .

We can now write a simplified form for the test statistic:

L0

L
=

(
∏

ti∈{ton}

b0

b+ s(ti)

)(
b0

b

)No f f

. (3.12)

In the case of a time-independent signal rate, this ratio is equivalent to the Li & Ma likelihood

ratio, when written in terms of average rates. For variable light curves, ON counts with arrival

times that match the expected profile of f (t) receive an essentially higher “weight”, according

to how bright the source was expected to be at the time.

3We have failed to find an analytical solution for θ , but cannot rule out that one may exist. A useful exercise
may be to write down the analytical solutions for Non ≤ 2 and attempt to guess a general form.
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3.2.3 Time-dependent background

In IACT instruments, a slowly-varying background rate can sometimes be modelled by an a

priori time behaviour. For example, this can be done by using a known dependence of the

background rate on the observation zenith angle. One can also use an independent part of the

field of view to study the background variation during an observation. This is the approach we

choose here. One should note that when the background variation is weak, which is often the

case for IACT observations, the method described in the previous subsection may be sufficient;

its tolerance can be studied by simulation, or by computing a source significance for multiple

points in the field of view during an observation.

Without loss of generality, consider the case of a Ring Background Model (Berge et al., 2007)

type of analysis. Ton and To f f now refer to different areas of the field of view, and the weighted

acceptance represents their ratio. This ratio is termed α .

In this context, we will stop referring to the ON and OFF observation times as being different

and simply denote them by Tobs, evolving into the language of the ring background model. Our

model will use the area outside of the ring as the background estimation region (see Figure 3.1).

In addition, we will define β as the ratio between the OFF acceptance and the acceptance of the

a priori estimation region.

It will be assumed that the acceptance is close to separable in time and radius: A(r, t)≈R(r)T (t).

Since β is calculated separately for every run, the approximation needs to be valid only for

those shorter time scales. Most of the acceptance changes during a single run are related to

changes in the zenith angle, and in turn in atmospheric absorption and projection angles of the

shower radiation. Those effects are mostly uniform across the field of view, especially during
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FIGURE 3.1: Top: The Ring Background Model (RBM) uses a ring around the source as the
background (OFF) region (Figure 4 from Berge et al. (2007)). Bottom: Our adaptation of the
RBM method uses the area outside of the ring for background variability estimations. The

diameter of the FOV is typically about 3.5◦.
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the limited changes in zenith angle during a single run. If one isn’t confident in this assumption

a reflected region analysis may be used in place of the ring background.

Our model for the OFF rate is now given by bβB(t). B(t) denotes the rate in the a priori estima-

tion region, and b is an unconstrained likelihood normalization constant that is defined for two

purposes: First, to correct any underestimations or overestimations in β , and more importantly,

to give an indication when those are incorrect. If the acceptance is indeed separable, one would

expect b to be close to 1 within statistical fluctuations.

Similarly, the background component of the ON rate is given by bαβB(t).

For the signal case, under the assumption that variations in the background rate correspond

to variations in the effective area of the instrument, we choose the following model for the

rate: [bαβB(t)]θ f (t) (recall that f (t) is given in terms of incoming flux and thus not by itself

instrument sensitive.)

By substituting these rates in place of the constant background rates, we can obtain the likeli-

hoods:

L j = ∆tNon+No f f

(
∏

ti∈{ton}
bαβB(ti)(1+θ f (ti))

)

×

 ∏
ti∈{to f f }

bβB(ti)

e−
∫ Tobs

0 dt(bβB(t)(1+α+αθ f (t))),

(3.13)
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L0, j = ∆tNon+No f f

(
∏

ti∈{ton}
b0αβB(ti)

)

×

 ∏
ti∈{to f f }

b0βB(ti)

e−
∫ Tobs

0 dt(b0βB(t)(1+α)).

(3.14)

Where j stands for the run index. For more than one run, the likelihood is simply the product

over all runs. Recall α,β , may depend on the run index.

In order to simplify the maximization, we define a new parameter θ ′ , θb. Clearly, this does

not change the likelihood result as (θ ′,b) and (θ ,b) span the same space.

The solution follows along the same lines as § 3.2.2. After taking the logarithm and summing

over all runs, we arrive at the maximization conditions for the signal hypothesis:

0 =
∂ logL

∂b
= ∑

All Runs

(
No f f

b
+ ∑

ti∈{ton}

1
b+θ ′ f (ti)

−
∫ Tobs

0
dt (βB(t)(1+α))

)
(3.15)

0 =
∂ logL

∂θ ′
= ∑

All Runs

(
∑

ti∈{ton}

f (ti)
b+θ ′ f (ti)

−
∫ Tobs

0
dtαβB(t) f (t)

)
. (3.16)

A simple notation was used to abstractly note the summation over runs, without explicitly indi-

cating the quantities that depend on the run index.
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As in (§ 3.2.2), we extract a condition at the maximum of likelihood function by asserting that

b∂ logL
∂b +θ

∂ logL
∂θ

= 0.

∑
All Runs

(
Non +No f f

)
= b ∑

All Runs

(∫ Tobs

0
dt (βB(t)(1+α))

)
+θ

′
∑

All Runs

(∫ Tobs

0
dt (αβB(t) f (t))

)
.

(3.17)

This condition is used to turn the 2D computer maximization search into a 1D search.

For the null hypothesis we find

0 =
∂ logL

∂b0
= ∑

All Runs

(
Non +No f f

b0
−
∫ Tobs

0
dt (βB(t)(1+α))

)
. (3.18)

Thus,

b0 =
∑All Runs

(
Non +No f f

)
∑All Runs

(∫ Tobs
0 dtβB(t)(1+α)

) . (3.19)

One can also note from Equations (3.17) and (3.19), that the exponentials in the likelihood ratio

will cancel. Including some other common terms that cancel, we arrive at essentially the same

likelihood ratio as in (§ 3.2.2):

L0

L
= ∏

All Runs

(
bNon

0

∏ti∈{ton}(b+θ ′ f (ti))

)(
b0

b

)No f f

. (3.20)
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It is thus instructive to consider the test statistic derived in (§ 3.2.2) in a simplified Monte-Carlo

simulation, as will be discussed in the next chapter.



Chapter 4

Detecting and characterizing transient

gamma-ray sources: implementation and

testing in the VERITAS software

4.1 The VEGAS analysis package

The challenges of implementing the technique outlined in the previous chapter in the VEGAS

code package are numerous. The standard RBM analysis (with the Li & Ma likelihood ratio

as its basis) does not require one to keep track of event timing, or even other event statistics

for those events that fall outside of the ring (OFF region). This has ended in the the need to

restructure the code in a few major VEGAS classes as well as to add a few new ones. We will

74
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give a very brief and essential discussion (omitting much detail) for each new class added to the

VEGAS package:

• VATimedSkyMap: a sky map that remembers the time of each event. Inherits most of its

properties from the previously used VASkyMap.

• VATimedLikelihood: a significance calculation and parameter estimation class. Can cal-

culate significance with an a priori light curve shape as described in the previous sections,

as well as the maximum likelihood amplitude of emission and background rate. Does not

depend on any VEGAS classes or infrastructure in order to be usable by other experiments

or packages if needed. The class in its current state is knowledgeable of power-law and

exponential light curves, and can import a light curve from a text file as well.1 It is easy to

add new functional forms due to the function pointer structure that is implemented. This

class is designed for maximal efficiency by separating the calculations that rely on the fit

parameter (θ ) from other cumbersome calculations.

• VATimeDependentRingBackgroundAnl: replaces VARingBackgroundAnl and puts every-

thing together. The changes required were too large and numerous for inheritance to be

desirable. It was thus copied and modified from VARingBackgroundAnl and does many

things differently. Perhaps the most important (non obvious) difference involves the us-

age of multiple lookup tables to curb inefficiencies in the original class that could not be

maintained due to runtime constraints (more discussion on this below).

The addition of so much new code means it is important to test this technique from both the

statistical point of view and the systematic one. We will do both later by looking at Monte Carlo
1Thanks to our Nevis summer student Garrett Mathews for his help with the import-from-text implementation.



Time-dependent likelihood: implementation 76

simulations as well as data. We will look at both in the absence of a signal and in the presence

of a signal. In the absence of a signal our expectations will be guided by Wilks’ theorem.

Early attempts at running the code were unsuccessful due to the time consuming nature of the

calculations. A single VERITAS run would typically take about one day to run on a fairly

standard processor (without ability to use multiple cores for a single analysis). In addition the

runtime is strongly dependent on the zenith angle of observation due to the way our skymap2

is binned by default, a feature we did not want to interfere with unless needed. This meant the

prospects for an LZA observation analysis–often needed for GRB observations–were difficult

and less likely to be used.

In addition to manual optimization of code, we used a tool package developed by Google for

performance analysis, aptly named gperftools. We were successful in linking this tool to VE-

GAS. In the final phase of testing, we used gperftools and obtained the result shown in Figure

4.1. On the bottom of the figure, it is evident that the majority of the computing time spent being

related to trigonometric evaluations. We associate this with calculations of distances between

bins in the skymap. The standard RBM code which was in place before our changes was able

to handle those calculations by ignoring all bins in the skymap that have no chance of falling

within the ring. It was thus structured in an inefficient way.

We have thus added a few lookup tables in order to curb the runtime:

• A table that stores the distance for every bin in the skymap from the center of the map.

This table is repeated for every run, due to the wobble technique which forces us to change

our position from run to run.
2The skymap is a map of the entire field of view of the observation, where excess counts, significance, or any

other position-dependent quantity can be plotted.
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• A table containing bins that fall within exclusion regions. Those regions are set by the

user, usually by choosing a position in the sky, such as a known source position, or a

bright star. The user also chooses a radius of exclusion. Bright stars, for example, would

require a larger radius.

• The distances between all pairs of bins in the skymap. This was the most memory inten-

sive, and at times required more than a standard laptop could bear. We later simplified this

table to include RA symmetry, which made the memory required manageable for almost

any laptop. A flag was created to give the user an ability to disable this table if memory

demands were too high. This can happen if a user attempts to perform multiple analyses

on a single laptop, all at the same time.

Using lookup tables above, in addition to other changes in code efficiency manually and by of

gperftools, we were able to reduce the runtime of a typical GRB observation to less than an

hour.
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4.2 Monte Carlo sensitivity estimations: time-independent

background rate

The time dependent test statistic was designed primarily for GRB analysis with IACT arrays.

Keeping that in mind, a simple Monte Carlo simulation was written in Python to assess the

improvement in sensitivity expected for a typical GRB analysis.

We first consider a time-independent background scenario as described in (§ 3.2.2) for the sim-

plicity of the model, and the expectation that the improvement in sensitivity should be similar

for other background models (e.g. § 3.2.3).

A GRB signal was simulated on top of a time-independent background. The light curve was

assumed to decay as 1/t (Ackermann et al., 2013), and the observation onset (in relation to t = 0)

and amplitude of this GRB signal were given a changeable value, of which some particular

values were studied. Each MC instance generated a random list of ON and OFF arrival times

which were fed into an optimization routine following (§ 3.2.2) and the resulting significance

was obtained. A significance value was also obtained using equation 17 of Li & Ma (Li and

Ma, 1983). Thirty thousand of these MC runs were generated and histograms of the significance

were produced. A selection of such histograms can be seen in Figure 4.2 (using parameters more

or less matching current generation IACT arrays – VERITAS, H.E.S.S., MAGIC).

It should be noted that for a rapidly decaying signal, the Li & Ma test statistic reaches a maxi-

mum significance after some time and then slowly decays, while the time-dependent likelihood

plateaus after a longer duration. Thus a more illustrative plot must involve the observing dura-

tion. This is shown in Figure 4.3. While one can attempt to optimize a time-window for the Li
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FIGURE 4.2: A comparison between the significance obtained by the time-dependent method
and Li & Ma, for a simulated gamma-ray burst. The background rates were more or less ad-
justed to those typical for a current generation IACT array. The intensity of the burst was chosen
to be close to the detection threshold. Top: The signal intensity of the GRB was given a power-
law decay index of -1 ( f (t) = 1/t), and the observing delay chosen as 2 minutes, with a total
observing duration of 30 minutes. Bottom: The total observing duration was extended to 90

minutes.
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& Ma likelihood test, it will depend on the unknown amplitude of emission, and thus can only

be approximated prior to analysis.

Thus our results show a gain of roughly 25% in significance, if one generously assumes that the

Li & Ma time integration can be decided a priori. The results shown will vary when one adjusts

the delay time of the GRB observations as well as the assumed time decay. A shorter time delay,

as well as a faster time decay will translate into greater gains for this new test statistic compared

to the Li & Ma test statistic.

4.2.1 Can the Li & Ma integration time be decided a priori?

We’ve previously made the claim that the Li & Ma likelihood test integration time cannot be

decided without knowing the amplitude of VHE emission a priori. While this may appear

obvious to some, a plot demonstrating the magnitude of the effect for a typical GRB light curve

may prove useful. In Figure 4.4, we plot the time-dependence for the significance for a “weak”

burst observation as well as a “strong” one, to show that the maximum significance is obtained

after a longer duration for a stronger burst. This plot also demonstrates an additional advantage

of the time-dependent likelihood method is that more integration time will likely always be

better, without the need to know the amplitude of VHE emission a priori.

4.3 Tests on observational data

To ensure the reliability of the VEGAS code and basic compatibility with the expectations found

from Monte Carlo simulations, we used a variety of data observations. For example, dark matter
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FIGURE 4.3: A plot studying the change in the significance value with observing duration.
Each point represents the mean of a histogram as in Figure 4.2 with a few thousand simulated
observations. The power-law index for the source time decay was chosen as -1.0 ( f (t) = 1/t),
and was reconstructed with the a priori indices of -0.5, -1.0, and -1.5 to assess the impact of the
uncertainty of this value in an experimental setting. The Li & Ma significance starts dropping in
value after about 30 minutes, while the time-dependent model continues to improve and, only

later, to plateau.

searches provide us with runs where a very strict upper limit was reached in a failed attempt to

discover VHE dark matter signatures. One such example is the Draco dwarf spheroidal galaxy

Acciari et al. (2010). The many dark matter runs can thus be used as a first-order approximation

of a VHE dark field of view. We have used these runs to test the implemented VEGAS method

on a dark field, and have also injected a simulated time-dependent signal into the ON region to

test the performance for source detection. In this section, we will discuss such tests and others.
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FIGURE 4.4: The ideal integration time of a burst with the Li & Ma method depends on its un-
known amplitude. We simulate burst observations for a weak and a strong burst to demonstrate
the magnitude of the effect. The bursts are simulated with a power-law index of −1, and an
observing delay time of about 1.5 minutes. It appears that it should be possible to choose an
integration time, without sacrificing more than 5-10% in sensitivity, even for a wide range of

possible VHE emission amplitudes.

4.3.1 BL Lac flare

On June 28th, 2011, VERITAS detected a strong flare from BL Lacertae. The observation

lasted 34.6 minutes, and the average flux was found to be around 125% of the Crab Nebula
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flux (Arlen et al., 2013). The rapid nature of the flare made it a prime candidate for testing

of the time-dependent likelihood on a detected signal. The flux appeared to be exponentially

decaying, and when fit with such a function, was found to have a decay-time of 13±4 minutes.

We modelled this time-decaying signal by Monte Carlo simulation, and compared those results

(improvement in sensitivity) to data. We first modelled an exponentially decaying signal using

the simulations described in the previous subsection. We produced a plot predicting the evo-

lution of the expected significance over time (compare to Figure 4.3), as well as a significance

distribution corresponding to a statistical ensemble of such an observation (compare to Figure

4.2). These results can be seen in Figure 4.5. We predicted an improvement from a significance

of about 22 sigma, to one that is nearly at 25 sigma.

An analysis of the BL Lac data confirms this result. We’ve followed the same cuts and analysis

routines described in Arlen et al. (2013), with the exception that we’ve replaced the Li & Ma

test statistic with the time-dependent one. We’ve also modified the decay-time of the signal to

include other possibilities, to test for the sensitivity to this parameter. We tested decay time

of 5, 9, 13, 17, and 21 minutes (Figure 4.6). We’ve also tested for an infinite decay-time,

corresponding to a flat light curve, which should replicate the Li & Ma significance. The results

we found confirmed our expectations, with roughly a 10% improvement in significance for a 13

minute decay time, which smoothly declines into the Li & Ma significance as the time-decay is

varied. The test at infinite decay time produced a result equal to Li & Ma to the 4th significant

digit–a good test on possible systematic or code related effects. The slight difference between

the two may be related to a slightly different way in which an acceptance curve is produced for

the time-dependent likelihood.
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FIGURE 4.5: Using Monte Carlo simulations to predict the improvement in significance for the
BL Lac flare. Top: Monte Carlo time evolution of significance for a source decaying exponen-
tially with a decay-time of 13 minutes. A pattern similar to the one seen in Figure 4.3 emerges:
the Li & Ma significance declines after about 30 minutes while the time-dependent significance
continues to improve and only later plateaus. By a fortunate coincidence, the VERITAS ob-
serving time for this flare, around 35 minutes, is close to the optimal Li & Ma integration time.
Bottom: Focusing on the observing time of this particular flare, we model the ensemble of
possible observations. An improvement of about 10%, or 2 sigma is expected, with possible
variations due to background and signal fluctuations (a precise calculation predicts an expected

improvement of 11.4%).
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FIGURE 4.6: The significance achieved for the BL Lac flare with the time-dependent likelihood
for different a priori decay-times.

4.3.2 Injecting a simulated signal into data runs

One of the first and obvious tests one can conduct is to inject a simulated time-dependent signal

into a data run and then analyze it. We’ve developed the infrastructure to do this in Python

using PyROOT.3 Our PyROOT script is responsible for going into the data file produced by

the fifth stage of VEGAS, and to add counts with a desired temporal probability distribution.

One later runs a VEGAS sixth-stage analysis on the modified fifth-stage file. We’ve applied

this PyROOT script to a group of 3 consecutively-observed Draco runs (thus with two wobble

changes in between). Due a small excess of counts in the ON region (likely due to a statistical

3PyROOT is an implementation of the ROOT libraries in the Python programming language, which allows
one to combine the many libraries available in Python with ROOT’s ability to interact with VEGAS files. As one
example of the usability of this interaction, we have used Python tools to randomly sample from various probability
distributions, as described later in the text.
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fluctuation), we’ve adjusted the script to delete all existing ON counts and then add a temporally

uniformly-distributed background such that there are no excess counts.4 Later, the script injects

a simulated signal with a specified time behavior.

The light curve we chose for the simulated signal is 1/t1.5, with an origin time corresponding

to 5 minutes prior to the first Draco run. In Figure 4.7, we show a distribution of significances

observed by repetitively running the same PyROOT script on the fifth stage VEGAS file and

consequently running the sixth stage in each repetition. The distribution in Figure 4.7 can be

compared to Figures 4.2 and 4.5 (bottom), but with less observations simulated due to compu-

tational constraints. The means of the distributions are in line with what is found by the simpler

simulations in Figures 4.2 and 4.5, with an improvement in the mean significance of 36%.5

4.3.3 Testing for nice behaviour of the null distribution

We chose three 30-minute runs from a Draco observation and searched for a GRB signal with a

time delay of 5 minutes and that decays as 1/t1.5. This test was conducted in the absence of an

injected signal, and the expectation is that the distribution of significance will approximately be

Gaussian with unit standard deviation, following Wilks’ theorem.

Since the coupling of runs at different wobble positions introduces some technical difficulties,

we began by testing only the first Draco run out of the three. This way, possible features of the

code that “stitches” together different wobble runs can be tested and found independently.

4Note that simply removing even a single excess count would bias the time-dependent distribution of the back-
ground.

5For the same 20 simulated observations, we’ve also attempted to look for a burst with a power-law index of -1
and -2; they’ve shown an improvement of 33% and 34% in significance, respectively.
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FIGURE 4.7: A simulated time-dependent signal was injected into three consecutive runs aimed
at the Draco dwarf galaxy (as described in text). An analysis with the Li & Ma method as well as
the time-dependent method has shown an improvement in the mean significance of about 36%.
This is in line with simpler and independent Monte-Carlo simulations produced in Python, and
serves as evidence for the successful implementation of our method in VEGAS with minimal
or no systematic effects. The Li & Ma significance histogram is plotted in blue, and the time-

dependent in green.

The skymap of point significances across the field of view, and their distribution, can be found

in Figure 4.8. While the significance distribution appears close to Gaussian and has an RMS

of 0.97, there is some clear non-Gaussian behavior at the tails. This behaviour is characterized

by an apparent deficit in both tails (compared to a Gaussian), but mostly on the negative sig-

nificance end.6 In § 4.4 we will be able to explain this behaviour at the tails using simulation:

It is a result of low-counting statistics, whereas Wilks’ theorem is applicable in the limit of a

large sample size. Using Monte-Carlo simulations, we will show this approach to Gaussianity

by gradually increasing the background rates.

6Some clarification may be needed for what is the meaning of a negative significance: Recall, the likelihood
ratio test can only ascribe a positive significance to an observation; a negative sign is customarily attached to the
significance in cases where the best-fit amplitude is negative (a gamma-ray “sink”).
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In both data and simulation, we found this behaviour to consistently show a deficit of signifi-

cance at the tails, when compared to a Gaussian. This corresponds to low “false alarm” rate,

and may therefore increase the sensitivity of the time-dependent technique, compared to the

case where one assumes perfect Gaussian behaviour. However, we have no proof that this be-

haviour is the case in general. We recommend that experiments in a low background regime rely

on Monte-Carlo simulations rather than Wilks’ theorem to assign significance to an observation

(although the corrections we observed to source detection are relatively minor).

We went on to test the code we added to VEGAS in its ability to “stitch” together different wob-

ble runs. We used all three Draco runs, and while the first few tests indicated some unexpected

features, we were able to correct them. One example of a problem which was fixed at this stage

relates to the way VATimeDependentRingBackgroundAnl handles parts of the skymap which

were in the field of view only during specific runs. For some bin/run combinations, the ON

exposure (or “time”) is 0 and the OFF exposure may be finite but small; this was not anticipated

in the code originally and had to be handled with care (by disabling runs with too little exposure

for every bin). We plot the distribution obtained for three consecutive Draco runs in Figure 4.9,

after our corrections to VEGAS code. It has an RMS of 1.004, and (unsurprisingly) appears to

have the same deficit at negative significance that was found for a single Draco run.
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FIGURE 4.8: We attempt to search for a (non-existent) GRB signal in a Draco run. The pa-
rameters for the time-dependent search are a delay time of 5 minutes and a power-law decay
index of -1.5. Top: A skymap with the significance calculated for every point in the FOV (with
a standard radius for each point, corresponding approximately to the VERITAS point spread
function). The white circle denotes the area around the Draco Dwarf galaxy. Bottom: In black,
the distribution of significances for all points in the field of view that are not excluded from the
analysis, such as areas in the vicinity of bright stars. In blue, a Gaussian distribution with the
best-fit width and mean is plotted. The black distribution is nicely Gaussian around the center

with an RMS close to 1, but the Gaussian form breaks down near the tails.
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FIGURE 4.9: The significance map and distribution plotted for multiple Draco runs, as a test
for the ability of the code to properly “stitch” different wobble runs together.
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4.4 Converging into Wilks’ theorem: approach of the test

statistic to Gaussian behaviour

As we noted in Subsection 4.3.3, analysis of Draco runs has indicated non-Gaussian behaviour

of the null distribution around the tails. Here we will show results that confirm this behavior

in simulation. We will also show that in the correct asymptotic limit, the null distribution

approaches that of Wilks’ theorem.

Wilks’ theorem is correct in the limit of a large sample, which in our case corresponds to a large

background rate.7 In Figure 4.10, we increase the background rate in our simulation gradually,

from 10% of the typical VERITAS soft-cut rate, to 1000%. Realistically, the former scenario

may roughly correspond to VERITAS hard-cut rates, and the latter to future CTA8 rates.

What we find is a striking similarity to the experimental distribution in Draco (center plot in

Figure 4.10), and a smooth transition into Gaussian behavior. Thus, it appears that current

generation IACTs do not have sufficient counting statistics to fully approximate Wilks’ theorem,

but CTA might. We note again what appears to be a lack of events in the tails, which corresponds

to a low “false alarm” rate; if carefully simulated and used, it will in fact boost the sensitivity

gains of the time-dependent method.

7While a large sample is usually taken to mean multiple observations, it is not too difficult to show that this is
mathematically equivalent to a higher background rate in a single observation.

8The Cherenkov Telescope Array (CTA) is the next generation IACT array, with about 10 times as many
telescopes and 10 times the sensitivity of current-generation arrays (Actis et al., 2011). The number of telescopes
roughly corresponds to the amount of background for a given set of cuts.
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FIGURE 4.10: Approach of the null hypothesis distribution to Gaussian in Monte Carlo sim-
ulation. Top: Background rate = 0.1min−1. Center: Background rate = 1min−1. Bottom:

Background rate = 10min−1.
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4.5 Monte Carlo simulation with a time-varying background

rate

In order to further be able to test and tweak the C++ code written for VEGAS (in particular the

VATimedLikelihood class), we decided to link it to our Monte Carlo code using the Boost.Python

library. This enables us to:

• Test the C++ code for errors and debug them using simulated data in Python.

• Adjust the values of free parameters in the code by testing on realistic simulations (one

such example will be discussed in Figure 4.14).

• Test the validity and tolerance of the method described in § 3.2.3.

• Establish a significance value for an observation when Wilks’ theorem fails, as in the case

of low statistics. This is done by numerically estimating the probability distribution of the

test statistic under the null hypothesis.

After successfully linking VATimedLikelihood to our Python code, we began to test the method

described in § 3.2.3 under the null hypothesis, with simulations of pure background which varies

in time. Wilks’ theorem implies that

√
−2log

L0

L
is distributed as a unit Gaussian. However,

there are reasons to expect some deviation from that behavior:

• Wilks’ theorem is only valid in the limit of high counting statistics.

• Uncertainty in the background variability estimation, or B(t), which is both statistical and

possibly systematic. In VATimedLikelihood, B(t) is computed (by default) as a running
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average of 1000 a priori counts. This implies a ∼ 3% statistical error. Increasing the

width of the running average will reduce this error, but will be unable to capture short time

scale variations in the background rate (1000 counts in the VERITAS FOV are typically

produced in about 5 minutes, if the softest set of cuts are used).

• Note that the statistical and systematic uncertainty of the α parameter is another prob-

lem not captured by our modelling, which is true even for the standard Ring Background

Model (Spengler, 2015). However, we expect the background statistical error to be dom-

inant over the systematic one, which would mostly emerge from inaccuracies in the ac-

ceptance separability assumption: A(r, t)≈ R(r)T (t).

4.5.1 The null distribution under a time-varying background

Our Python Monte-Carlo simulation assumes that the separability assumption is correct, and

simulates an a priori background region, an OFF region, and an ON region, with predetermined

values of α and β . By simulating a region, we are referring to a Monte-Carlo generation of

correctly-distributed arrival times for background counts. The behaviour of the background can

be set to any time-varying function. In contrast to the previous subsection, no GRB signal is

simulated, since we are interested in testing the behaviour of the TS under the null hypothesis.

The arrival times are fed into an likelihood estimation routine based on § 3.2.3 with an ad-

justable parameter for the number of counts averaged to determine background variability (a

larger window lowers the statistical error but might be insensitive to quick variations in the

background rate). This in fact is the Boost.Python version of VATimedLikelihood. Thus, our
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Python simulations with a time-varying background are fed into the same C++ code that is used

to estimate significance in VERITAS observations.

We modeled the background variation as a cosine function with an adjustable period: b(t) =

2+ 0.6cos(2πt/P), with units in counts per minute. We also shifted the same function by a

phase of π

2 . We attempted to infer the significance of a possible gamma-ray burst that began 2

minutes prior to the onset of the run (t = 0), and that decayed as a power-law with an index of

-1 (1/t). The first test conducted computed the RMS of the null significance distribution as a

function of the period of the cosine function (Figure 4.11). Note that by adjusting the period (P)

as well as the phase, one can simulate a monotonically rising or falling background rate during

the observation.

For the purposes of detecting GRBs, we are more interested in the odds of obtaining a false high

significance than the entire shape of the significance distribution. The most reasonable variabil-

ity from the plot above (100min) was studied, and the odds of obtaining a high significance was

plotted (Figure 4.12).

We conclude that any possible “widening” of the null significance distribution, whether it is an

actual widening or a non-Gaussian tail, is minor in comparison to the gain in significance we

predict for a gamma-ray burst.
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FIGURE 4.11: A cosine dependent background rate is simulated with different periods, and two
different phases. We plot the RMS of the null distribution against the period of the cosine func-
tion. Note that the smaller time-scales are unrealistically small, outside of possibly very cloudy
weather. The larger time-scales are slow enough to be realistic in good weather conditions, but

may be fast enough to cause some problems with the test-statistic distribution.

4.5.2 Optimizing the time-bin size used for a priori background estima-

tion

As described in the previous chapter, the time-dependent approach relies on the a priori back-

ground region to estimate the time-variation of the background. In VATimedLikelihood, this is

done using a running time-average of 1000 counts, which corresponds to about 5 minutes under
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FIGURE 4.12: Studying a particular example from Figure 4.11, with a period of 100 min-
utes, we plotted the tail of the significance distribution with a million simulated observations.
Against this are plotted standard unit-Gaussian probabilities, and a slightly widened Gaussian
with the RMS obtained for the entire simulated distribution. The background rate used here is

comparable to a current-generation IACT rate with soft cuts, or about 2 counts per minute.

the best circumstances (soft cuts and a small zenith angle). This implies a statistical error of

about 3% and that the ability to catch a background varying on the scale of less than 5 minutes

is minimal. The value of 1000 counts for the width of the running average is only a default

and changeable for any user running a VERITAS analysis. Here we will use Monte Carlo sim-

ulations in Python to attempt to test and optimize the effect the size of the time bin may have.

This is largely meant as a demonstration of the capacity of our Monte Carlo code, and will
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need to be repeated by a user who is interested in replicating this for their particular source and

experiment.

We begin with a test that includes the very rapidly changing background function

[1+0.5sin(2πt/15min)] 1
min , which is unrealistic in good weather conditions but may be justi-

fiable in cloudy conditions.9 However, the test is designed to test the limit of the mathematical

approach we described, and may–as an added benefit–be useful for some other type of instru-

ment. Because we associate 1000 counts in the FOV with about 5 minutes of observing, this

short time scale represents the most interesting test scenario.

In Figure 4.13 we see that even in such rapidly changing conditions the time-dependent ring

background model (another way of referring to § 3.2.3) has an RMS that only widens by 4−5%

compared to Li & Ma. In comparison, the time-dependent (TD) likelihood which assumes a

constant background rate (§ 3.2.2), has an RMS that widens by 9.5%. One can naturally expect

that TDRBM will outperform the TD likelihood in this test by a more significant amount when

the period becomes larger than 15 minutes, but at the same time the amplitude of background

variation remains high.

We now change the period of the background to 50 minutes, which is still exceedingly large and

fast, as it implies 50% background rates swings in approximately 12 minutes. In Figure 4.14,

we plot the RMS of the null significance distribution against the size of the a priori running

average. While a larger number of simulations may be needed to establish a definite result,

we find the lowest RMS (1.03) for a width of about 300 counts; it is a reasonable compromise

between statistical error and fast response time. This demonstrates how a careful user may want

9Note that cloudy conditions usually represent a spatial problem in the background rates as well as a temporal
one. In those cases, it is essentially hopeless to expect a well behaved significance distribution using any method
outside of an ad hoc artificially large background assumption or something of that sort.
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FIGURE 4.13: Testing the significance distributions of different likelihood methods under a
rapidly varying background rate described by [1+ 0.5sin(2πt/15min)] 1

min . Note that in this
case we map all significances to a positive number, which will not affect the RMS. We use
the time-dependent background approach (TDRBM) with two widths for the a priori moving
average of 500 and 1000. We also test the time-dependent approach that assumes a constant
bacgkround rate (TD Likelihood), and the Li & Ma method. While as expected, both time-
dependent methods show widening of the distribution, TDRBM performs significantly better

than the time-dependent method with the assumption of a constant background rate.

to approach optimizing the size of the time-bin, but more studies are needed to know which size

is ideal under different circumstances. For now, our tests do not show an urgent need to depart

from the default value of 1000.
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FIGURE 4.14: A background rate of [1+0.5sin(2πt/50min)] 1
min is simulated. We then tweak

the size of the of the time-bin used for the a priori running average, and plot it against the RMS
of the null significance distribution. The optimal size of the time-bin we find is 300 counts, with
a corresponding RMS of 1.03 (although the statistics are not high enough to make a conclusive

statement on the optimal size of the time-bin).

4.6 Summary

We derived a new time-dependent test statistic for the purpose of detecting sources with highly

variable light curves. The derivation yielded a elegant result that can be readily compared with

the standard Li & Ma test statistic. This can provide useful insight into when it becomes im-

portant to apply this technique. Furthermore, since the number of time bins approaches infinity,
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highly variable sources can be tested without a high computational burden, as long as the time-

stamping of events is accurate enough. After testing our technique on simulations of gamma-ray

bursts, we conclude that it is effective and robust, increasing the sensitivity to detection appre-

ciably.



Chapter 5

Angular reconstruction for large

zenith-angle observations

5.1 Introduction

Reconstructing the incoming angle of the primary is one of the most crucial aspects of Cherenkov

array shower reconstruction. Consider that a mere 10% improvement in angular resolution, as-

suming locally uniform background rates, corresponds to a reduction of ∼ 20% in background

levels (due to an ability to search for a source in a smaller test region). This, in turn, corresponds

to roughly 10% improvement in the expected significance for a given source observation, and

approximately 20% reduction in the observing time required to reach a standard significance

associated with detection.1 The latter is true in the limit of well-understood and modelled back-

ground, and is also a good approximation in the case of a more realistic test-statistic as devised

1This threshold is typically defined as the equivalent of 5 Gaussian standard deviations

103
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by Li & Ma (Li and Ma, 1983).

Other advantages to better angular resolution:

• Separating distinct nearby sources.

• Getting a purer signal/background ratio, allowing us to study characteristics of a source

more accurately.

• Better source localization.

In this chapter, we will explore the two standard methods for angular reconstruction of Cherenkov

showers: the geometrical method, and the Disp method. We will then discuss our work to im-

prove the Disp method and our implementation of a new weighting method, attempting to take

advantage of both methods at the same time.

5.2 The geometrical method

Consider the following facts:

1. When imaging an EAS, one generally expects to find an elongated axis, corresponding

approximately to the original direction of motion of the primary particle.2 We will term

2If the shower is imaged directly from below, it will appear roughly circular due to symmetry. While showers
will rarely be imaged from “exactly” below, a shower with near-zero impact distance will be close to circular and
will present a very large error in major-axis reconstruction. Any algorithm developed has to deal with this fact in
a reasonable way.
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this the major axis, and the perpendicular direction as the minor axis. The minor axis

is sizable due to secondary shower particles traveling less-than-parallel to the primary

particle’s direction of motion. Practically, the major axis may be found by minimizing

the sum of the squares of the signal distances, as was originally done by Hillas in 1985

(Hillas, 1985). See Figure 5.1 (center) for a cartoon depicting a major axis of an EAS

image.

2. If this primary particle is a photon, and if the direction of motion is continued along

an extension of this major axis, it will inevitably point towards the emitting astrophysi-

cal source, regardless of the orientation and location of the imaging apparatus. In other

words, the source position lies either on the major axis or along its extension.3

3. A second or third imaging apparatus may conduct the same exercise. Typically, this image

is taken from a different location on the ground, but the telescope is oriented in the same

imaging direction (i.e. zenith and azimuth angles). In this case the major axis will have

a distinctly different orientation due to a parallax effect, however, the source, being an

astrophysical (“infinite”) distance away, will not suffer from parallax and will be located

at the same point on the imaging plane.

4. One can overlay the images produced by multiple imaging instruments–which are all

pointing in the same direction but physically distant on the ground–and expect all major

axes to intersect at the source location.

This is the basis for the geometrical method of angular reconstruction, henceforth known as

Geo. An example can be seen in Figure 5.1. In practice, when more than two images of a
3If the primary particle is charged, it will have been bent in magnetic fields on its way to Earth and thus lost its

information of origin.



Angular reconstruction 106

F
IG

U
R

E
5.

1:
D

em
on

st
ra

tio
n

of
H

ill
as

pa
ra

m
et

er
iz

at
io

n
an

d
th

e
ge

om
et

ri
ca

lm
et

ho
d,

fr
om

Se
nt

ür
k

(2
01

1)
.T

he
re

d
do

tr
ep

-
re

se
nt

st
he

po
si

tio
n

of
th

e
so

ur
ce

.C
en

te
r:

a
ca

rt
oo

n
of

a
pa

ra
m

et
er

iz
ed

E
A

S
im

ag
e.

A
m

aj
or

ax
is

is
fo

un
d

by
m

in
im

iz
at

io
n

of
w

ei
gh

te
d

sq
ua

re
s

as
do

ne
in

H
ill

as
(1

98
5)

.T
he

n,
th

e
fir

st
m

om
en

td
efi

ne
s

th
e

ce
nt

er
of

th
e

im
ag

e.
T

he
se

co
nd

m
om

en
t

in
th

e
m

aj
or

ax
is

di
re

ct
io

n
is

te
rm

ed
L

en
gt

h,
an

d
in

th
e

m
in

or
ax

is
di

re
ct

io
n,

W
id

th
.

L
ef

t:
m

ul
tip

le
st

er
eo

sc
op

ic
im

ag
es

ar
e

co
m

bi
ne

d,
an

d
th

e
ge

om
et

ri
ca

lm
et

ho
d

is
ap

pl
ie

d
to

re
co

ns
tr

uc
tt

he
so

ur
ce

po
si

tio
n.

Pa
ir

s
of

te
le

sc
op

es
di

sa
gr

ee
on

th
e

po
si

tio
n

of
th

e
so

ur
ce

,a
nd

a
w

ei
gh

te
d

av
er

ag
e

is
us

ed
to

de
te

rm
in

e
th

e
gr

ee
n

do
ta

s
th

e
re

co
ns

tr
uc

te
d

po
si

tio
n.

R
ig

ht
:

an
ot

he
r

at
te

m
pt

at
ge

om
et

ri
ca

lr
ec

on
st

ru
ct

io
n.

T
hi

s
tim

e,
th

e
m

aj
or

ax
es

ar
e

ne
ar

ly
pa

ra
lle

la
nd

th
e

re
su

lti
ng

po
si

tio
na

l
er

ro
rb

ec
om

es
un

ac
ce

pt
ab

le
.



Angular reconstruction 107

Cherenkov shower are overlaid, they will rarely (never) intersect at a single point. This funda-

mentally has to do with imaging noise and EAS statistics:

• Camera noise and photon statistics, involved in imaging the shower.

• Statistics involved in shower development, which may in some instances, point the major

axis away from the primary particle’s direction of motion. To understand this, we can

consider an electron-positron pair produced by a primary photon, coming from above the

atmosphere; the electron has some momentum towards the right and the positron towards

the left. Suppose the electron on the right happens to travel substantially further than

the positron on the left, before producing a photon, which then also travels less than

expected before pair-producing once-again (whereas the photon on the left immediately

pair-produces). This will have the effect of “tilting” the appearance of a shower and

misdirecting the major axis. Using Monte Carlo simulations, we have been able to find

the typical error in the major axis direction to be on the order of 5 degrees, but the exact

amount of error depends on cuts used for shower selection. For example, picking only

the brightest EAS images will produce a better result, while sacrificing effective area.4

The final position is then found by some kind of weighted averaging of intersection points

between pairs of telescope images. If the imaging instrument observes the shower from close to

overhead, it is more sensitive to any noise because the image is nearly circular. In a reasonable

weighting scheme, intersection points involving such nearly circular images will be weighted

less favorably in the reconstruction process. In the next subsection, we will discuss the Disp

4This is in fact a central issue related to angular reconstruction. Any real improvement in angular reconstruction
should be able to do so without sacrificing effective area.
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method, another approach to angular reconstruction–which in fact performs well under such

circumstances.

5.3 The Disp method

There are instances when the geometrical method becomes susceptible to error and is better

replaced by an alternative method (more on those particular instances in the next subsection).

Luckily, one such method exists: the Disp method was originally used by the Whipple 10M

telescope for direction reconstruction using a single telescope, where the geometrical method

cannot be used (Lessard et al., 2001). To see how the Disp method is realized consider that:

• When imaging an EAS that is overhead, one can expect the image to appear nearly circu-

lar, due to symmetry in shower development.

• As one moves further away from the overhead direction, the image becomes elongated

along the direction of motion of the primary. The ratio of the elongated dimension to the

non-elongated one will continue to increase as one moves away from overhead.

• If the telescope location is fixed, but the primary particle is made more energetic, the true

length of the shower is likely longer, and thus will appear to be longer on the imaging

plane.

Thus we arrive at the conclusion that elongated showers are typically more energetic or suffer a

larger parallax angle compared to overhead. This parallax angle is defined as the angle between

the image centroid and the source position on the camera image. We define the Disp angle as
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FIGURE 5.2: Demonstration of Hillas parameterization with the Disp parameter, from Sentürk
(2013). The real source position is marked with a red dot. The major axis and other parameters
are then found as discussed in Figure 5.1. Due to various errors, the true source position lies
slightly away from the major axis. Disp is defined as the projection of the distance between the

source the center of the image along the major axis.

the projection of this parallax angle along the major axis of the shower image (see Figure 5.2).

Since not all showers originate from particles of identical energy, a simple table converting the

elongation ratio to the Disp angle cannot work. What is typically added in the most basic Disp

version is the brightness of the image, to serve as a proxy for the shower energy. This brightness

is usually calculated as the sum of all PMT counts in the image.

Figure 5.2 shows a depiction of what we just discussed, formally known as a Hillas parameteri-

zation. An elongated shower is characterized by the first moment along the major axis, defined

as Length, and along the minor axis, defined as Width. The parallax angle is known as Disp.

The sum of all counts within the image is defined as the Size.

In VEGAS, the original implementation of the Disp method involved only those three quantities,
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and a table converting them into a Disp angle (Sentürk, 2011). This Disp table was created by

averaging images from a Monte Carlo simulation of EAS showers imaged by VERITAS. If

multiple telescope images are available, some kind of weighted averaging is then done to find

a final source position. The weight assigned to each image can depend on how reliable it is

deemed to be based on many possible factors.

Later in this chapter, we will describe an analysis done by the author of this work to improve

on the original Disp method and study possible variations on the approach and how they affect

the angular resolution.

5.3.1 Head/tail ambiguity

One weakness the Disp method exhibits is that it typically makes no distinction between both

directions of the major axis. That is, the Disp approach gives the absolute angle of parallax, but

not its “sign”, which would choose which direction to follow along the major axis to get to the

source. The reason the sign presents more of a challenge is that the geometry of the EAS often

creates an image that is nearly symmetric between the top and the bottom of the shower (the

top of the shower, while narrower, is brighter and thus can have a similar apparent size to the

bottom of the shower). The symmetry between “head” and “tail” is not a precise one, and can

sometimes be decided by a separate table, which may use parameters outside of the ones we

discussed to make the distinction.

There are two approaches to typically deal with the head/tail ambiguity:

• One can create a classifier that uses some other shower parameters to attempt to distin-

guish the “head” and “tail” as a separate process from the Disp estimation. This should
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be feasible at least partially because we do not expect exact symmetry in the imaging of

the top and bottom of the EAS, nor do we expect arrival times of photons in the image to

have such symmetry (timing information often plays a major role in head/tail classifiers).

• For stereoscopic observations with N telescopes, one can consider all head/tail combina-

tions (of which there are 2N) and choose the one that leads to the smallest spread between

the telescope-by-telescope position reconstructions. This is the approach used in VEGAS.

5.4 Combining Geo and Disp

In a memo written by M. Beilicke in 2010 (Beilicke, 2010), it was found that the angular res-

olution obtained by Geo deteriorates rapidly as the zenith angle of observation increases. We

explain this as the result of one primary factor: the abundance of nearly parallel EAS im-

ages taken by the different telescopes. To see why this happens, we consider the size of the

Cherenkov light cone. As discussed earlier, a telescope must be within the light cone to have a

chance of imaging the EAS. As the zenith angle of observations increases, the showers observed

have a correspondingly sharp angle to the ground, producing a large Cherenkov light pool. This

means that many of the observed showers will have been detected substantially further away–in

terms of core distance, or distance from the natural landing position of the primary–from a fairly

compact array of 4-telescopes, such as VERITAS (with inter-telescope distances of ∼ 100m).

Those distant showers differ much less in parallax between image to image, when compared to

those showers that would naturally “land” much closer to the center of the array.

The Geo method thus suffers from redundancy; since it relies on parallax between multiple

telescope images, it fails in the limit of multiple nearly identical images. The Disp method,
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however, relies on parallax between the shower center and the source position in the sky (i.e.

compared to overhead). Thus, it does not suffer comparable deterioration.

Beilicke plotted the 68% containment radius of reconstructed event angular error (a measure

for the angular resolution) as a function of the cosine of the zenith angle of observation. He did

this for both Disp and Geo, both of which were applied to Monte Carlo simulation data. What

he found can be seen in Figure 5.3. As mentioned, this plot shows a rapid deterioration of the

Geo angular resolution with increasing zenith angle.

Beilicke used the dependence he found on the zenith angle to define a new angular reconstruc-

tion technique, which he terms geo/disp. It is defined as a weighted sum of Disp and Geo, where

mathematically ′geo/disp′= w×Disp+(1−w)×Geo. On the camera plane, a straightforward

definition of this weighted sum is applied: one draws a connecting line between the Disp posi-

tion and the Geo position and selects the source position as the point on that line such that the

distance from the Disp position is 1−w
w times the distance from the Geo position. This is equiva-

lent to interpreting the mathematical definition above as a vector sum in the camera plane. The

weight in question varies as a function of the zenith angle of observation, w = w(θz).

To find an optimal weight for every zenith angle, Beilicke studied Monte Carlo simulation data

at various zenith angles, optimizing the value of w for each separately by computational trial

and error (by minimizing the 68% containment radius). The values that he found were then fit

into analytical form:

w =


1 cos(θz)< 0.4

e−12.5×(cos(θz)−0.4)2
otherwise

(5.1)
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FIGURE 5.3: Angular resolution of Disp, Geo, and a new weighted method (geo/disp), taken
from Beilicke (2010). The angular resolutions of all methods are plotted as a function of the
cosine of the zenith angle of observation. The angular resolution is calculated with Monte Carlo
simulations, by computing the 68% containment radius of randomly generated events. A cut
on the number of telescopes with useful images is also made, something which is not discussed
here and does not seem to affect the conclusion. This cut is made either for at least 2 or at
least 3 and is denoted by N in the legend. Denoted by W+, there is also an attempt to modify
the weighting scheme for the images, without much consequence. We shall focus on the main
conclusion of this plot, which finds a severe deterioration of angular resolution in large zenith
angles for Geo, and no comparable effect for Disp. The new weighted method outperforms both
Disp and Geo at all zenith angles, as expected. Somewhat more surprisingly, the new weighted

method provides appreciable improvement in intermediate angles as well.

At small and large zenith angles, Geo and Disp dominate the weighting scheme, respectively.

This weighting scheme will later be known as Method6 in VEGAS, which is the term we will

use from now on. Method6 has been shown to be successful by Beilicke in his memo, and while

this should be evident by our previous discussion for small and large zenith angles, it also turned
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out to provide appreciable improvement over both techniques in intermediary zenith angles. In

her thesis, G. Senturk has continued this work and found similar results (Sentürk, 2013).

5.5 An improved weighting scheme: weight tables

5.5.1 Introduction and derivation

The improvement Beilicke found for intermediate zenith angles has led us to consider a new ap-

proach for angular reconstruction. We will depart from Beilicke’s analysis in two fundamental

ways:

1. While Beilicke relied on the zenith angle alone to determine the weight w, we will not

similarly restrict our analysis. We’ve argued that the zenith angle is only correlated to

the angular deterioration in Geo, which is truly caused by showers that land far from the

array, causing images taken by the different telescopes to appear nearly identical. Thus

one can have the weight depend directly on a quantity that relates to the impact distance of

the EAS (or how close to parallel the major axes are). As an example, we define stdPsi as

the RMS of all major axis angles between couples of telescope images (where only bright

and legible images are selected). A cartoon demonstration of calculating stdPsi, as well

as a histogram of this quantity can be seen in Figure 5.4. We will see that the energy of the

primary also plays a major role, and can potentially be included in a weighting scheme.

This opens up the possibility of a weight factor that depends on multiple parameters.
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FIGURE 5.4: The stdPsi parameter: cartoon and histogram. Left: a cartoon demonstration of
an event and the angles between pairs of axes, those being: 30°, 40°, 70°. We calculate this
event to have stdPsi =

√
302 +402 +702 ≈ 49.7°. Right: A histogram of stdPsi for Monte

Carlo events produced at a zenith angle of 45°.

2. We will use a more rigorous mathematical approach to finding an optimal weighting

scheme, as explained below.

Consider two random variables representing the angular errors of Disp and Geo: D and G. In

practice, there will be 2-dimensional vectors on the camera plane corresponding to two separate

axes, x and y, and the error associated with each. One can repeat our analysis for each axis

individually, so for now we can assume we are referring to the x axis angular error without loss

of generality. We will attempt to find a weight (w) that will minimize the error of a weighted

sum of both Disp and Geo: w×Disp+(1−w)×Geo. To discover the optimal weight one

needs to apply, we begin by assuming that both D and G are unbiased: that the expected value

of the error vanishes, or is at least very small compared to the RMS. We will require this quality

to hold for reasonably defined subsets of all events. For example, one may choose to define D

only over those showers that have a small Length, and abnormally large Width, and still expect
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our assumption to hold. The fundamental reason we expect this to be true is based on different

reasons for Disp and Geo:

• Disp is by definition derived from a Monte Carlo sample of EAS, distributed in a manner

true to the physical distribution of such showers. As the sample of showers increases, the

error in the Disp method will be attributed to shower statistics and camera noise, both

of which are incorporated into the MC sample. We believe this error to be irreducible

(Hofmann, 2006). However, a large enough sample of MC events will cause the mean

error in Disp to vanish.

• The error in Geo is expected to be RMS dominated by reasons of symmetry: every shower

as viewed by an array of telescopes can be rotated around the geometrical array center by

180 degrees (assuming the telescopes are arranged in a symmetric way, which is approxi-

mately correct for VERITAS). As long as such symmetry is preserved, we can expect any

subgroup of showers to have a small mean error compared to RMS.

One final note is that if one does find a mean error in Disp for a subset of showers that is defined

by the Disp parameters (recall those are Width, Length, and Size), it is highly encouraged to

correct for this error rather than incorporate it into a weighting scheme.

Empirically, we will show results later in the chapter confirming our suspicions above, showing

that for a large enough sample of MC events, the RMS in error is much greater than the mean

(for thousands of events we find a typical factor of approximately RMS
mean = 10).

From here on, we will use basic statistics theory to find an optimal weight that will minimize

the RMS of the resulting weighted random variable. For intuition, it may be worth repeating
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some results routinely derived in basic probability theory: When two uncorrelated random

variables with similar variances are averaged, the resulting random variable has its variance

halved. If the two random variables are perfectly correlated (as in being one and the same),

this averaging scheme will lead to no reduction in noise levels. The discussion above on Disp

and Geo demonstrates the possible different sources of error they have, as well as those that

are somewhat similar, such as image noise. We expect their errors to be somewhere between

uncorrelated and fully correlated. We will later show their correlation to be moderate.

To find an optimal weighting scheme between Disp and Geo, we define a new random variable

R = wD+(1−w)G. We will first compute the standard deviation of R (σR) as a function of the

standard deviations of D (σD) and G (σG):

σ
2
R =< (R−< R >)2 >

=< R2 >

=< w2D2 +2w(1−w)DG+(1−w)2G2 >

= w2
σ

2
D +2w(1−w)< DG >+(1−w)2

σ
2
G,

(5.2)

where < X > stands for expected value of X , and one notes that as the sum of two random

variables with vanishing means, R must have a vanishing mean value as well. We shall also

note that < DG > corresponds to the covariance between D and G, due to their vanishing mean

values. We shall denote this as CDG.

We can now find an optimal value of w by finding where the derivative of σR with respect to w

vanishes:
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(σ2
R)
′ = 0

= 2wσ
2
D +(2−4w)CDG−2(1−w)σ2

G.

(5.3)

Which gives us the following solution for w:

wopt =
σ2

G−CDG

σ2
D +σ2

G−2CDG
. (5.4)

This expression can be written in a more compact notation by defining the correlation coeffi-

cient, c = CDG
σDσG

, and the ratio of the standard errors as r = σG
σD

:

wopt =
r− c

r+ 1
r −2c

(5.5)

(one consistency check for this solution is to invert r into 1
r by assuming that we had defined w

and 1−w in reverse; that is, the former would apply to Geo and the latter to Disp. Then, we

add this new expression to the original and find that both weights add to 1).

5.5.2 Implementation

To implement the weighting scheme concept in VEGAS, a few things must be considered.

First, one has to choose a parameter space over which to produce the weights. For example, one

may choose the zenith angle of observation (as Beilicke did), and the (reconstructed) energy

of the shower, which will produce a 2-dimensional weighting scheme. One then has to choose
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reasonably defined bins over this parameter space. For every bin, a set of Monte Carlo instances

is found in simulation data, and r and c are estimated using standard estimators for covariances

and standard deviations of a sample. Then, Equation 5.5 is applied to find the optimal weight

for this bin. A table is constructed and optimal weights are stored in it. This table, henceforth

known as a weight table, is stored on a hard drive in the local computer. A separate piece of code

then has to be written in the VEGAS package. When a VEGAS analysis is run on a VERITAS

observation, this code will find the correct bin for every event, go into that bin in the weight

table, and apply the correct weighted average of Disp and Geo based on its findings.

For brevity, we will only discuss some of the details involved in the above description, since

there many ways of achieving all steps above, most of which are straightforward and pose more

of a coding challenge than a conceptual one.

One of the major concerns in constructing a weight table is choice of parameter space. One

would like to find a parameter that exposes at least one of two things: a strong dependence of

the resolution ratio, defined as r above, or a strong dependence of the correlation coefficient,

denoted as c. For example, we know that the zenith angle, as found by Beilicke, is suitable for

the former. The error in Geo increases strongly above a certain zenith angle, whereas Disp stays

approximately the same, causing r to be strongly related to the zenith angle. One may consider

in place (or in addition) some measure of how identical different telescope images are, as we

postulate this as the source of Geo’s deterioration.

One such possibility is stdPsi. To answer whether it is a good parameter, we first study the

dependence of Disp and Geo resolution on this parameter. What we find is somewhat surprising.

While we do see a pattern of Geo declining in performance as stdPsi decreases, we also observe

(see Figure 5.5):
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FIGURE 5.5: Resolution plots of Disp and Geo as a function of stdPsi at small and large zenith
angles reveal the complexities of this analysis. Top: Disp (Method5) performance as a function
of stdPsi, for a zenith angle of 0° (black) and 65° (red). Bottom: Geo (Method0) performance
as a function of stdPsi, for a zenith angle of 0° (black) and 65° (red). Both x and y axes are in

degrees.
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FIGURE 5.6: A deeper look into the angular error distributions of Disp and Geo for nearly
parallel, large zenith events. We select all Monte Carlo events with stdPsi < 5° at a zenith angle

of 65°. The Disp distribution appears to be bimodal due to head/tail ambiguity.

• At the lowest values of stdPsi, there is a dramatic loss in performance for Disp. In fact,

for the lowest stdPsi and small zenith angles, Disp performs almost as poorly as Geo.

• Disp outperforms Geo even for large stdPsi at a LZA. This clearly means that the zenith

angle dependence of resolution is not fully replaceable by stdPsi (it may still be replace-

able by other measures of the multi-telescope image angles).

We conclude that stdPsi is a useful parameter, but should not stand in place of the zenith angle,

but rather in addition to it. One could attempt to explain our findings as a separate exercise.

We will speculate that Disp may be performing poorly at very low stdPsi values due to the lack

of sufficient statistics in Monte Carlo simulations that fall within those values, in addition to
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the head/tail ambiguity. Nearly parallel images are likely to especially impact head/tail deci-

sions that are done using the second approach described in § 5.3.1 (as is the case for VEGAS).

However, Figure 5.6 should demonstrate that head/tail ambiguity cannot by itself explain the

dramatic decline in performance, because the 68% containment is not highly affected by the

relatively small percentage of events at the tail of the distribution.

Another parameter of importance is the energy of the primary. We have the privilege of study-

ing it unambiguously, due to the fact that the Monte Carlo simulations provide us with a correct

value for every event (rather than a reconstructed value). Our results consistently show a de-

clining angular resolution for high energy events for the Disp method, especially at small zenith

angles. Practically, it is difficult to use the energy as a parameter for the weight table, because

the way it is calculated requires the angular reconstruction to be done first. To use the energy in

the weight table, one would have to give a first estimation of the angular position, calculate the

energy, and go back to producing a more accurate position. We will therefore choose a proxy

to represent the energy, using the average Size of all images observed by the telescopes.

Some additional parameters we have considered for the weight table (this is not an exhaustive

list):

• Loss: Some EAS images, especially those that are of high-energy primaries, or far off-

center, are truncated at the edge of the camera. While this would hurt the performance of

both reconstruction methods, it would likely have especially negative consequences for

the Disp reconstruction (since it relies heavily on the elongation of the image). The Loss

parameter is defined as the sum of signals in edge PMTs (in the outer ring of the camera)

divided by Size.
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• Time Gradient: Recall that particles in the EAS travel faster than the atmospheric speed

of light. Thus if one is imaging a shower from underneath, the photons emitted from the

top of the shower will arrive after those from the bottom. Conversely, if the shower has

a distant landing position, photons from the top of the shower will arrive first, because

they are taking a direct path to the telescope. There are some showers that are oriented in

between those two extremes and have a very small time-gradient between arrival of pho-

tons from the top and bottom, and thus the entire EAS image arrives almost immediately.

Thus calculating the difference in arrival times of photons along the major axis, typically

in nanoseconds-per-degree, can be a useful measure of EAS orientation (it has been used

in the past to resolve head/tail ambiguity).

• Number of telescopes: Here we are referring to the number of telescopes that have good

quality images that can be used for reconstruction. The geometrical method requires at

least two telescopes (in a typical analysis if only a single telescope has a good quality

image, the event is not reconstructed). One can imagine some interesting information

residing in the combination of the telescope number and some of the other parameters.

For example, a small stdPsi value combined with a small number of telescopes, should

certainly favor the Disp method. How much would this change when there is a large

number of telescope images available?

• RMS of reconstructed positions: In the Disp method, there will be telescope-by-telescope

spread in the reconstructed position, and in the Geometrical method the same would apply

to any pair of telescope images which represent an intersection point. This spread could

represent valuable information on how well each method is able to reconstruct an event.

One additional, similar quantity, involves the uncertainty in each Disp table bin which is
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used in the reconstruction process. One has to be careful on how to weigh this uncertainty,

which exists separately for each image in the multi-telescope reconstruction.

Note that for the quantities that are available for every telescope image separately, and thus

multiple values exist for every event, we’ve implemented the possibility of using the sum, mean,

standard deviation, min, max, and mean of the absolute values. Our process for finding the

best weight table has been to produce plots as seen above, in addition to trial and error and

mixing of parameters. There is often no replacement to a trial and error approach, because the

multivariate nature of this analysis makes it difficult to notice useful patterns which may work

well if implemented.

In creating a weight table for testing or application purposes, we bin the multi-dimensional

table such that it will have about 100 to 1000 events on average in any single bin. Bins that

have many events, are “printed”5 during the process, in addition to bins that are selected by a

random-number generator. We programmed this printing not only for testing how well the code

that produce this weight tables works, but also for testing our assumption that RMS/mean� 1.

We also print bins that have RMS/mean < 3 (if any exist). In the process we found that in

virtually all large bins and randomly printed ones, the assumption of low mean error has held

true (with a ratio of at least 5 or so, and usually much larger). The “high mean” bins always

seemed to be a result of low statistics in a bin, with no more than a few 10s of events. Our tests

provide a limited sample which affirms our assumptions, however one may want to use similar

method to make sure their parameter choice does not violate the low-mean assumption.

5The “printing” of a bin involves a message that includes the number of events in the bin, values of parameter-
space represented by it, and statistical parameters related to Disp and Geo reconstructions that were discussed in
the text. The mean error of both Geo and Disp is printed as well, a quantity which was assumed to be small in the
development of the method.
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One important pitfall that we found in the process of making the weight table, is that our usage

of standard deviations rather than 68% containment can sometimes be problematic.6 The latter

definition of angular resolution likely carries more significance in observations, whereas the for-

mer can give too much weight to extremely poorly reconstructed events. We noticed this tends

to disfavor the Disp method, likely due to some events with head/tail confusion. Therefore,

we have implemented a “threshold” for the calculation of standard deviations and correlation

coefficients, where events with very poor reconstruction (say, > 0.3 degrees) are not considered

in the weight table construction process (i.e., those events do not pass the threshold).

In Figure 5.7, we plot some interesting distributions that are found when producing a weight

table. These examples are typical of what we would find regardless of parameters and threshold

used in table construction. The plots show how the correlation coefficient and weight com-

puted (using Equation 5.5) are distributed for all bins in the weight table. The distributions are

weighted by the number of events in every bin. One can see a typically moderate correlation

coefficient of around 0.5 (with a wide distribution, and even some negative correlations, which

could potentially correspond to sparse bins).

The bottom plot in Figure 5.7 shows the distribution of weights, with the counterintuitive result

that some are greater than 1 (or less than 0). This may seem surprising, and is a somewhat

curious result of strong positive correlations with different error-scalings.

Consider a method that produces a reconstruction of the position with error ε , where ε can

be distributed in any way one pleases. Consider another method that produces an error that

is scaled with respect to the first method, and otherwise identically distributed: k× ε . These

6Both definitions of angular resolution are identical if the error distribution is Gaussian, however we have
already seen that this is not the case, most notably due to head/tail ambiguity.
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random variables will be perfectly correlated. It is trivial to show that a weight of k
k−1 will

completely eliminate the error, and give an exact reconstruction every time. This weight exploits

the different scaling of errors to eliminate it entirely; it is impossible to do so when k = 1. To

what extent this phenomenon is realistically exploitable in angular reconstruction in difficult to

say: it seems to require a very large correlation coefficient, as well as a large ratio of errors.

As a first test on the performance of the weight table, we produce angular resolution plots on

the same Monte Carlo data that was used to produce the table. If the bins used to construct

the weight table are large enough, they should accurately represent the statistical quantities

of interest, and thus should not introduce a significant bias favoring the weighted approach

(something one should always watch out for when building a method and testing it on the

same data). In any case, the plan is to perform any final test on source observations, which

will need to confirm results based on Monte Carlo simulations. Figure 5.8 shows the angular

resolution obtained by one of the weight table implementations (termed Method9a), showing a

good level of improvement that seems to be constrained by the limitations of the Disp method

at the smallest zenith angles.

5.6 A new Disp method

5.6.1 Motivation and implementation

In Lu (2013), the H.E.S.S. experiment has found the Disp method to outperform Geo at all

zenith angles in their analysis. As we’ve seen in the last subsection, the VEGAS method that

had existed appeared to perform poorly at small zenith angles. We have decided to upgrade our
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FIGURE 5.7: An example of distributions arising in the construction of a weight table. The dis-
tributions are of all bins constructed in the table, where each bin is multiplied by the number of
Monte Carlo events within it. Top: Distribution of correlation coefficients, showing a typically
moderate correlation between Disp and Geo errors. Bottom: Distribution of weights, notably
with a small but significant fraction being greater than 1 or less than 0 (see discussion in text).
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FIGURE 5.8: Angular resolution of one weight table parametrization and threshold (method9a),
obtained with Monte Carlo simulation. This is compared to Disp and Geo, showing some

improvement even at the smallest zenith angles.

own Disp method. The potential of a better performing Disp method at small zenith angles was

very appealing, in light of encouraging results from the weight table even for the original Disp

method. A weighted method that can rely on two strong moderately correlated methods can

potentially deliver a very strong improvement.

Our new Disp method would rely on the Toolkit for Multivariate Data Analysis (TMVA), a

package within ROOT that uses machine learning to perform multivariate analysis. It can be

used as a replacement for the Disp table, and should outperform such a table given a similar

amount of training data. It also provides a simpler and more standardized environment for

training, testing, and using the results in analysis. Such an environment can be a big advantage

for a future research project within VERITAS that may want to improve on our work.



Angular reconstruction 129

To train a multivariate method, we begin by separating all Monte Carlo events image-by-image,

and computing their true Disp, thus treating each telescope image as a separate event. We then

ask TMVA to separate all events into two groups, one designated for testing and the other for

training. After choosing some of the many multivariate techniques available (see Figure 5.9),

TMVA uses the training data to build a Disp estimator for each technique that was selected. It

tests the result on both the testing and training data; one should mostly consider the testing data

when looking at the performance, but a discrepancy can be important for identifying overfitting,

a known shortfall of some machine learning techniques.

We’ve also developed the necessary infrastructure in VEGAS to use the products of TMVA for

each telescope, and the combine all Disp estimators of the separate images to reconstruct the

position of an event. We began by simply averaging all telescope Disp estimators, but then

noticed a very strong improvement when weighting the images by reliability. This weighting

is achieved by training two more TMVA methods: a Disp error estimator, and major axis angle

error estimator. The Disp error estimator relies on the Disp estimator; it uses the brightness of

the image and its elongation to determine what is the likely error, in absolute value. Thus, the

error itself cannot be used to improve Disp, but rather it is used to weight the results of high

quality images over those of low quality ones.

We note that the final Disp table made use of the following parameters, all of which were

discussed earlier: Width, Length, Size, Time Gradient (along the major axis), and Loss. It also

makes use of the zenith and azimuth degrees of observation. The error estimators use similar

parameters, but also rely on the value of the Disp estimator for the event.
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FIGURE 5.9: Comparison between different multivariate techniques available in TMVA (with
relatively standard parameters). The best result we found was using Gradient Boosted Decision
Trees. This has remained the best option even after more experimental testing, partially by a

student collaborator (St Marie, 2014).

5.6.2 Correcting for a bias

It is typical to train the Disp estimator on Monte Carlo simulations that mimic events at a 0.5◦

distance from the center of the FOV. This practice is a result of the typical wobble observation,

made at the same distance of 0.5◦ (for extended source observations this is often not the case).

An unexpected consequence of this type of training is that the Disp table, or TMVA estimator,

can be biased and attempt to reconstruct events towards 0.5◦ off-center. We cannot rule out

this possibility even for the simplest of Disp estimators (using only Size, Width and Length).

As a possible example of this bias, the estimator might realize that a certain combination of
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FIGURE 5.10: Angular resolution of the Disp method improves dramatically after implement-
ing a telescope weighting based on image quality. It now performs well at small zenith angles

in contrast to the Disp table.

parameters must indicate a truncated EAS image at the edge of the FOV and work backwards

towards the “correct” off-center angle. In this case, the bias may not be immediately obvious,

and could appear as a systematic issue at the highest energies only.

We have encountered this bias after completing the initial training of the Disp method and

attempting to test the results on Crab Nebula data. Figure 5.11 shows a comparison of Disp and

Geo acceptance curves, showing a clear excess at 0.5 degrees. The key to solving this issue is

to realize that one must always train a Disp estimator on some distribution of events, and so it

is likely impossible to always eliminate biases. However, by training on a smooth (and perhaps

realistic) distribution of events in the field of view, one can achieve a method that is biased



Angular reconstruction 132

FIGURE 5.11: Plotting an acceptance curve for an analysis of 86 high quality Crab Nebula runs
(with the source excluded). Both Geo and Disp are plotted. One can clearly see a bias in the

Disp estimator, shifting reconstructed positions to 0.5◦ off-center.

in a smooth and controlled fashion. This type of bias can be handled properly using the ring

background model (see Chapter 1 and Berge et al. (2007)), which may otherwise be unsuitable

for “bumpy” features in the acceptance curve.

In Figure 5.12 we show this exact solution to our bias: we train the TMVA estimator on events

that would form a reasonable and smooth acceptance curve. A full removal of the excess at 0.5◦

is only achieved after modifying the training on not just the Disp estimator, but also the error

estimators (Disp and major-axis)–showing how remarkably capable machine learning can be at

discovering patterns, and how careful one must be to avoid biases.
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FIGURE 5.12: The bias shown previously can be corrected by training TMVA estimators on a
smooth distribution of events. Top: we show the acceptance curve before and after modifying
the Disp estimator training to an all-offset distribution. Remarkably, there still appears to be
some small bias, likely due to the error estimators. Bottom: after modifying the error estimators
to train on an all-offset distribution, the bias appears to be gone (within statistical uncertainty).
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5.7 Another attempt at the weight tables

Given the improvement delivered by the new Disp method, especially at small zenith angles,

we implemented a new weight table approach between Geo and this improved Disp method.

For this iteration, we decided to use the TMVA tools rather than the original approach of a

multidimensional table. This was decided due to similar reasons as with the Disp method; not

only is TMVA likely to outperform a simple table, but it can be more easily replicated and

modified.

The TMVA estimators required to implement a weight table:

• Disp error: as opposed to the estimator described in the last section, this does not refer to

the expected error in the single-image Disp parameter, but rather the error in reconstruc-

tion of an event.

• Geo error: similar to the Disp error but for the geometrical method.

• Covariance: here we ask TMVA to estimate the error in Disp multiplied by the error in

Geo, in either axis of the camera plane.

While the method shows significant improvement, it is clear that more trial and error in the

parameter space could lead to further improvement. Given the upcoming development and

testing of a new method of reconstruction that could replace Disp (based on simulation tem-

plates) (de Naurois and Rolland, 2009), we would like to see it combined with the Geometrical

method–which we believe is still likely to perform better in many cases.
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FIGURE 5.13: Angular resolution before and after changing the weight table to a TMVA ap-
proach, showing a small improvement, tested on 86 Crab Nebula runs (thanks to Nahee Park
for selecting and processing those runs up to stage 2 of VEGAS). The plot is also compared to

Geo.

5.7.1 Resolution prediction

In the process of weighting Disp and Geo, the weight table predicts the angular resolution

available for each event. This can serve as powerful information, and a cut on this value could

enhance analysis by, for example, separating nearby sources. One can also use this cut to

attempt a higher signal purity for spectral studies.
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FIGURE 5.14: Angular resolution, tested on 86 Crab Nebula runs. The resolution of the
weighted method represents an improvement of close to 10% at the smallest zenith angles (yel-
low). At the largest zenith angles, the Disp method may still be preferable, likely because the

weighted method minimizes standard deviation rather than 68% containment.

Initial testing on the feasibility of such a cut showed a rule of thumb, that in order to halve

the PSF radius, about 90% of the effective area needs to be sacrificed (this will also result in a

reduction of background levels). More studies should be performed here, but we suspect bright

extended sources could greatly benefit from this type of cut as well.

5.8 Conclusions

We described a new weighted method that aims to take advantage of two separate angular recon-

struction techniques. Early results showed promise and a new Disp method was implemented to
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further improve the performance at small zenith angles. The weight table method has resulted

in about a 10% improvement in resolution even at the smallest zenith angles. It is possible that

with a different choice of parameters this method can perform even better, and we encourage

more experimentation in that domain.



Chapter 6

VERITAS observations of gamma-ray

bursts: selecting and analyzing the most

promising candidates for detection

Large parts of this chapter have been published in the 2015 International Cosmic Ray Confer-

ence (ICRC) proceedings (Weiner, 2015), where this work has been presented by the author. It

has been reformatted and new content has been added, especially in relation to GRB 150323A.

6.1 Observing program and integration with GCN alerts

In the VERITAS observing program, gamma-ray bursts are considered the highest-priority

sources. GCN alerts with a finer than 10° localization uncertainty radius are treated as a priority

138
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and prompt the observers to slew immediately to any such burst that is above a 20° elevation.

VERITAS sensitivity is expected to be sufficient to detect strong bursts under reasonable as-

sumptions about their high energy spectrum, as we’ve seen in § 2.4. For example, an extrap-

olation of LAT observations for GRB 130427A predicts an initial VERITAS flux of about 100

photons per second during the prompt phase (Aliu et al., 2014), while, for comparison, the back-

ground rate for a region the size of the point-spread-function (PSF) is on the order of 1 count

per minute. At the night of GRB 130427A, VERITAS was not operating due to a full moon;

however, according to the estimates, a detection of the burst would have been achieved in less

than a second. Observations started the following night, and results yielded a small positive

significance of 1.3 for the first night, and 1.1 for the second night (Aliu et al., 2014). There

are also theoretical reasons to anticipate VHE emission during both the prompt and afterglow

phases, as we’ve seen in § 2.6.

As of the time this analysis has been conducted (June 2015), VERITAS had observed 132

gamma-ray burst locations.1 Of these observations, we attempted to analyze the most promising

candidates for detection based on a reasonable a priori measure.

6.2 Selecting the most promising candidates for detection

The most important factors in our ability to detect a burst are the observing delay, redshift (z),

and elevation angle at the time of observing. The elevation angle is particularly important for

high redshift bursts, since the instrument’s energy threshold rapidly increases with decreasing

1VERITAS has added some observations since. We haven’t updated this analysis to reflect those additional
observations.
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elevation angle, whereas absorption of gamma-rays due to the extragalactic background light

(EBL) favours a very soft spectrum. We also required the burst to have been localized as well

as our angular resolution or better (∼ 0.1°). Bursts with unknown redshift were left out of the

analysis, considering the high z typically associated with them.

We calculated the following weight for each burst that met the conditions above: W = e−τ(z,Eth(θ))/tobs,

where τ is the optical depth2 due to EBL absorption at the threshold energy, which depends on

the elevation angle of observation θ , and tobs is the observing delay. One can recognize this

expression to be approximately proportional to the incoming VHE flux at the initial time of

observing, assuming the flux decays as 1/t, as is more or less typical for Fermi-LAT observed

bursts (Ackermann et al., 2013).

One significant factor that is missing from our weighting expression is the luminosity distance,

which would account for the geometric factor that favors nearby bursts, approximately 1/R2 at

nearby distances. We choose to ignore this factor to correct for selection biases of satellites.

Nearby bursts are more likely to be fainter as they are easily detectable by X-ray instruments.

The other factors in our weighting expression do not affect the ability of any space observatory

to detect a burst, as X-rays are insensitive to EBL absorption as well as to our zenith angle of

observation.

We’ve calculated the weighting factors for all relevant bursts. The most promising observation

was found to be that of GRB 150323A. We analyzed other bursts with weights within a factor

of about 100 of its weight, to account for possible intrinsic variance in the VHE emission of the

bursts. We found 7 other observations that met our criteria (see Table 6.1).
2We obtained this value using the method described in Finke et al. (2010).
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Name of Burst Significance

GRB 111225A -0.7

GRB 120422A 2.5

GRB 130215A -0.6

GRB 130427A 1.7

GRB 130604A -0.7

GRB 140622A -1.3

GRB 150120A -0.5

GRB 150323A -1.5

TABLE 6.1: Time-dependent like-
lihood significance of 8 selected

VERITAS bursts.

The bursts were analysed using a standard VERITAS anal-

ysis package, as described in Chapter 1. Cuts optimized

for soft spectrum sources were used in the analysis (when

considering EBL absorption, even nearby bursts are likely to

have a soft spectrum at Earth in the VHE energy range). The

VHE flux was assumed to decay as a power law with an in-

dex of −1, beginning at the prompt phase of emission. The

results for each of the 8 bursts is described in Table 6.1. No

individual burst was detected at a 5-sigma level.

6.3 Stacking analysis: abandoning

the Kolmogorov-Smirnov test statistic

in favor of a binomial test

A standard way to search for a weak signal present in mul-

tiple observation is by use of the Kolmogorov-Smirnov test

statistic (e.g., Acciari et al. (2011)). Known in short as the KS test, it works by examining the

largest difference between a theoretically expected cumulative distribution function (CDF) and

an observed, empirical cumulative distribution function (ECDF) (e.g. Stephens (1974)). An

ECDF is produced for N independent, identically distributed samples. Given the number of

samples, N, and the largest difference found between the CDFs, one can determine the likeli-

hood of this distance or greater arising under the null hypothesis; that is, if the ECDF is indeed
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FIGURE 6.1: Illustration of the Kolmogorov-Smirnov test statistic. The red curve is the theo-
retical CDF, and the blue curve represents the empirical CDF (ECDF). The largest difference
between the curves is found across all X values and denoted by a black arrow. The length of this
arrow is the test statistic. Taken from https://en.wikipedia.org/wiki/Kolmogorov-Smirnov test.

derived from the theoretical CDF. This largest difference between the curves is illustrated in

Figure 6.1. The null probability is also known as a p-value, which may then be converted into a

standard Gaussian significance.

Usually, a cumulative distribution of the significance of all observations is plotted (ECDF), and

is compared to the theoretical prediction in the absence of a signal, given by Wilks’ theorem.

We believe this test has some substantial weaknesses with respect to our type of analysis and

the kind of signal we are looking for:

• Non specificity: When the KS test statistic finds a significant p-value, the interpretation is

highly non-specific. For example, one can consider whether Wilks’ theorem is applicable

in the limit of low statistics or in the presence of systematics (we have discussed some
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examples in Chapter 4). The KS test will eventually discover even small inaccuracies in

the theoretical CDF, without an ability to point to whether the “signal” came from such

inaccuracies, or what those inaccuracies are.

• Insensitivity to certain types of signal: The KS test is sensitive to difference in cumu-

lative probabilities, and thus only indirectly to rare occurrences. Suppose that out of 50

observations, two bursts were discovered at a significance only slightly under 5-sigma,

and the rest follow a Wilks’ theorem distribution. There is little assurance that the KS

test will detect this kind of signal. Indeed, this kind of signal may be exactly what we are

looking for, since we suspect some of our GRB observations may have been too late to

detect VHE emission, or at a redshift to large to be seen.

• Lack of control: There are no free parameters in the KS test that allow us to control what

we are searching for, whether we are expecting a few bright bursts, many faint bursts, or

both.

• Handling possible CDF uncertainties: There is no clear way to handle possible un-

certainties in the theoretical CDF. For example, suppose one were to widen the Wilks’

theorem distribution, in order to make a “conservative” estimation of a p-value. If the

true CDF is narrower than the widened CDF, the KS test will clearly detect this discrep-

ancy as a signal over a sufficient number of observations. In other words, the KS test will

only accept an exact theoretical CDF, no more or less, without room for a conservative

estimation of any kind.

We devise a simple test that we believe addresses all issues above, a binomial test. It is per-

formed as follows: Each burst is analyzed and its significance is found. A threshold significance
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is decided prior to analysis, and each burst can pass a test by having a greater significance than

this decided threshold, or otherwise fail the test. A p-value is calculated given the number

of bursts that passed the test compared to what would be expected if their significance values

followed a unit Gaussian distribution, as one would expect from the null hypothesis (Wilks’

theorem).

The p-value is calculated with the following formula and then converted to Gaussian signifi-

cance:

P =
N

∑
n=l

(
Φ

n(s)(1−Φ(s))N−n
(

n
N

))
(6.1)

where l is the number of bursts passing the test, N is the total number of bursts in the analysis,

and Φ(s) is defined here as the one-sided probability of obtaining a result with Gaussian signif-

icance greater than s: Φ(s) =
∫

∞

s dx 1√
2π

e−
x2
2 . Note how one can increase the variance of this

Gaussian for a conservative estimation, something which was not feasible for the KS test.

The binomial test p-value may also be multiplied by the number of trials. In this analysis, we

accounted for 10 trials while using only 3 of them (see Table 6.2). The reason for this is that we

are anticipating more trials on a wider selection of bursts without a known redshift.

The threshold significance values were carefully selected using a computer script, to make sure

that a whole number of bursts will be required to give an exact 5-sigma result. This resulted

in fractional values for the thresholds, to a precision of 3 decimal digits. Table 6.2 summarizes

our test selection3 (thresholds are calculated using a trials factor of 10). Table 6.2 describes the

final p-value of all 3 binomial trials.
3This selection was made prior to analysis of the bursts and the results found in Table 6.1.
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Threshold
signifi-
cance

Minimal number
of bursts needed

to achieve
detection

Number of bursts
passing test

p-value

1.852 6 out of 8 1 out of 8 0.23
2.611 4 out of 8 0 out of 8 1
3.998 2 out of 8 0 out of 8 1

TABLE 6.2: Description and results of all binomial tests.

6.4 GRB 150323A

6.4.1 VERITAS observation and upper limit

The results on the VERITAS analysis of this burst are detailed in VERITAS Collaboration

(2017), a paper we are writing in collaboration with the group that developed the model we

described in § 2.6. Here we will summarize the observation and results.

On March 23rd 2015, 02:49:14 UT, the Swift Burst Alert Telescope (BAT) triggered on a burst

with a J2000 position of (128.191, +45.434) and an error radius of approximately 3 arcminutes

(Amaral-Rogers et al., 2015). This error radius is both smaller than the VERITAS gamma-ray

point spread function (∼0.1 degrees) and the VERITAS field of view (∼3.5 degrees). This

position was later refined with Swift X-ray telescope (XRT) measurements to an accuracy of a

few arcseconds (Goad et al., 2015). The optical afterglow was detected by the Low Resolution

Imaging Spectrometer (LRIS) on the Keck I 10m telescope. Several absorption and emission

lines uniformly indicated the redshift of this burst to be of z = 0.593 (Perley and Cenko, 2015).

VERITAS began observing the burst 270 seconds after the Swift trigger. The elevation of the

source was 73 degrees at that time, and slowly rising. The observations lasted for a few hours.
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We first used our test statistic for time-varying sources, with the assumption of a 1/t light curve;

There was no detection, as seen in Table 6.1.

Upper limits are more straightforward to produce with the Li & Ma test statistic, especially

since they do not rely on assumptions about the shape of the light curve. However, one must be

careful to choose a sensible integration time, which should not be too large, as we’ve seen in

Chapter 4. Our simulations indicate for the assumption of 1/t light curve, a 270 second delay-

time, and a burst on the threshold of detection, the ideal integration time is about 40 minutes

(there is no need to be too precise here, as we do not know the exact light curve and amplitude

of emission). As expected, the Li & Ma test statistic did not show a detection. We found the

differential upper limit at 138 GeV is 3.05×10−6 TeV−1 m−2 s−1, and the integral upper limit

at 138 GeV to 30 TeV is 1.29× 10−7 m−2 s−1. This upper limit assumes an intrinsic photon

counting power law index of−2, and overlays extragalactic background light (EBL) absorption

based on the model described in Finke et al. (2010).

Alternatively, the 99% upper limit can be given as 16.5 photons during the first 40 minutes of

VERITAS observation. This is a more natural way to quote an upper limit, as it does not require

any assumptions on the spectral shape of emission.

The Swift-BAT light curve, seen in Figure 6.2, places GRB 150323A into the “precursor”

category, where most of the emission is produced tens to hundreds of seconds after a weak

trigger event. These types of bursts can account for as few as 3% to as many as 20% of all

bursts depending on the criteria used to define them (Burlon et al., 2008). The light curve

of GRB 150323A consists of one minor peak which triggered the observation, and a larger

secondary peak about 135 seconds after the trigger. The VERITAS telescopes were on target

270 seconds after the BAT trigger at 02:53:44 UT, which corresponds to a 135 second delay
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FIGURE 6.2: The Swift-BAT lightcurve for GRB 150323A, showing both the precursor and
the main emission period. The different coloured plots correspond to various energy bands
observed by BAT as indicated in each subplot. Taken from the batgrbproduct analysis page:

http://gcn.gsfc.nasa.gov/notices s/635887/BA/.

compared to the main BAT peak. While the VERITAS observation is delayed relative to the

prompt (BAT) emission, we stress that GeV observations by LAT consistently indicate a more

temporally extended emission at higher photon energies (Ackermann et al., 2013). If this result

extends to the VERITAS energy band, one would expect strong VHE emission, detectable by

VERITAS at the time of observing. Note that GRB 150323A was not in the LAT field of view

within an hour of the Swift-BAT trigger.
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6.4.2 Empirically driven extrapolation

Historically, the energy emitted in the GeV band by LAT-detected bursts clusters around 10%

of the prompt energy detected by GBM (Ackermann et al., 2013). Assuming that comparable

energy is emitted at higher frequencies, we calculated the expected fluence in the VERITAS

band and compared it to the experimental upper limit. We have assumed that:

1) VHE emission begins suddenly and decays as 1/t.4

2) The fluence emitted in the VERITAS energy band is given by 10% of the prompt fluence

detected by the BAT.

3) EBL absorption follows the model by Finke (Finke et al., 2010).

4) We approximate the VERITAS effective area as uniform, while in reality it is very slightly

changing during the observation.

Of these assumptions, we believe (2) is the most dependent on GRB-environment and theory.

Assumption (1) has been established by LAT data as a good approximation,5 (3) is in fact

considered stringent in light of recent results (Abeysekara et al., 2015) and assumption number

(4) is a very good approximation used for simplification purposes.

Our resulting ratios are greater than 1 (see Table 6.3), indicating that the VHE emission must

be weaker than expected by extrapolation.

4We have the emission suddenly end after 1 day, consistent with the typical length of a LAT observation.
5LAT results show that in the GeV band, afterglow fluence is comparable to prompt fluence, and decays ap-

proximately as 1/t (Ackermann et al., 2013).
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Emission
begins at
triggera

Emission
begins at
t = 135s

Origin time at
trigger

1.4 2.5

Origin time at
t = 135s

n/a 2.1

a With a 1-sec delay, consistent with LAT observations of prompt emission delay

TABLE 6.3: Ratio of the model fluence to the VERITAS upper-limit under different assump-
tions. The origin time corresponds to t = 0 in the 1/t time-decay. As an example, an origin
time of 135s could correspond to a burst that was independent of the triggering emission. The
emission start time corresponds to the fluence budget of TeV radiation under assumption (2).

6.4.3 Constraints on the GRB environment

As we discussed in § 2.6, an upper limit can be used to put constraints on the GRB environment.

This relatively nearby burst had an energy output that would far exceed our upper limit of 16.5

photons, even if only 10% was emitted in VHE gamma-rays (VERITAS Collaboration, 2017).

We thus arrive at the following conclusion:

For the wind medium, the maximum IC energy must have been below the VERITAS energy

threshold of 138 GeV, which implies the condition

Ekin/(1052 erg)
A/(1011 g/cm)

< 0.36. (6.2)

The condition above is found by requiring the IC cutoff in Equation 2.3 to be below the energy

threshold, while taking the pair-loading to be unity–which results in a condition on the Lorentz

factor. Then, using Rload found in Equation 2.4, we extract the condition on the enviroment from
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Equation 2.5–which describes the Lorentz factor at the time the pair-loading becomes small as

a function of the kinetic energy and ambient wind density.

Using the standard parameters of Ekin = EGRB and A = 3×1011 g/cm, this condition is satisfied,

but barely. For a particularly dense wind, this condition would be more easily satisfied.

For the ISM, it is difficult to constrain the environment. The relatively faint X-ray afterglow

would not have been sufficient to cause efficient cooling (VERITAS Collaboration, 2017), and

thus it is possible that VHE emission was too faint to be seen, regardless of the density of the

CBM or kinetic energy associated with the burst.

6.4.4 Summary

GRB 150323A was observed by VERITAS promptly and under fortunate observing conditions.

At a redshift of about 0.6, it does not suffer from much EBL attenuation, especially at the lowest

VHE energies. In addition, the high elevation and good weather conditions have made this burst

observation an excellent target for theoretical analysis. While we did not detect the burst, our

observations produced a strong upper limit which we interpreted theoretically using the model

described in § 2.6.

The Wolf-Rayet wind medium has been generally found to be consistent with Fermi-LAT results

(Hascoët et al., 2015). The constraint we derived from the VERITAS upper limit in Equation 6.2

is therefore significant. While it does not violate the model we use to understand the afterglow

emission, it significantly constrains the wind density and kinetic energy of the burst (as we’ve

seen, for standard parameters the condition in the equation is only marginally satisfied). In

the future, more IACT observations under the same conditions (redshift, elevation, time-delay)
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are expected to eventually lead to a VHE detection; in the absence of such a detection our

understanding of afterglow physics would have to be questioned. Thus this result and similar

observations in the future will undoubtedly further our understanding of gamma-ray bursts, and

in particular their afterglow physics.



Future prospects

To date, gamma-ray bursts have not been detected at very high energies of above 100 GeV,

in spite of a significant number of observations by multiple instruments, among them 159 ob-

servation by VERITAS. As part of this work an improved and collective analysis of the most

promising VERITAS burst observations has resulted in a non-detection, continuing to favor

lower levels of emission at the highest energies. As discussed in Chapter 2, this could indicate

a high-density CBM in the Wolf-Rayet population of progenitors, or a typically low kinetic

energy budget for the GRB ejecta.

We remain optimistic about future prospects for detection. In Chapter 3, we derived a test statis-

tic for transient source detection, increasing the sensitivity appreciably, as shown in Chapter 4.

We’ve also implemented some improvements in angular reconstruction which can be used to

increase sensitivity at all zenith angles of observation. The Disp method is now more robust,

allowing it to used for large zenith observations without biases, crucial for GRB detection since

most observations are at such angles and often have large uncertainty in their position.

All of the technical improvements we described in this work can be used by current and future

generation IACT arrays. Additionally, the test statistic for transient source detection could be

used by other gamma-ray instruments such as HAWC, which observes most of the sky at all

152
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FIGURE 6.3: CTA will bring a great improvement in sensitivity in comparison to current-
generation IACT arrays. This fact combined with a lower energy threshold and other im-
provements, will drastically increase our ability to detect and study gamma-ray bursts. Fermi-
LAT will still be of vital importance due to its large sky coverage and sensitivity at 10s of
GeV and below. From the official CTA webpage: https://www.cta-observatory.org/science/cta-

performance/.

times and therefore has many bursts in its field of view; the non-existent delay time in such

cases will likely make the test statistic we derived even more important for such observations.

An ideal scenario for studying the physics of bursts and their afterglows would be a simultane-

ous detection with an IACT array and Fermi-LAT. Even an IACT non-detection in the presence

of bright LAT-detected emission can be very significant. LAT data can be used to find the pa-

rameters associated with the explosion and provide a definitive prediction for VHE emission in

the afterglow which can then be tested independently.
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The prospects for such a simultaneous detection will increase significantly with the operation

of CTA, the next generation IACT array–which will in fact be composed of two separate arrays,

in the Southern and Northern hemispheres (Actis et al., 2011). Any one CTA array have a

sensitivity that is about an order of magnitude greater than that of current generation arrays (see

Figure 6.3). It will also have a lower energy threshold at about 20 GeV, thus probing deeper into

the universe by partially escaping the the impact of EBL scattering. Moreover, the larger field

of view and number of telescopes, about 30 for the North and 100 for the South, allow good

coverage of the nearby sky the case of a GCN alert with poor localization. This seems all but

certain to guarantee interesting results that will shed light on the nature of gamma-ray bursts

and their interaction with the environment surrounding the explosion.
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