Gamma-Ray Burst Science in the Era of
TACT Arrays

Ori1 Michael Weiner

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2017



© 2017
Ori Michael Weiner

All rights reserved



ABSTRACT
Gamma-Ray Burst Science in the Era of IACT Arrays

Ori Michael Weiner

In this thesis, we explore and improve on the science of gamma-ray bursts with particular atten-
tion to the very-high-energy regime. We begin by discussing Imaging Atmospheric Cherenkov
Telescope Arrays (IACTs), which are the primary instruments of observation at very-high-
energy gamma rays. We focus on a particular, state-of-the-art IACT array in southern Arizona:
Very Energetic Radiation Imaging Telescope Array System (VERITAS). We then discuss the
science of gamma-ray bursts and what can be learned from IACT observations. We follow with
a couple of technical improvements, allowing one to better search for and characterize gamma-
ray bursts with IACTs. The techniques focus on statistical methods for detection of transient
sources, as well as angular reconstruction at arbitrary zenith angles of observation. We then use
one of our new statistical methods to search for a signal in VERITAS observations of gamma-
ray burst locations, with tests designed to search for particular bursts as well as for hints of
emission in the entire sample of observations. We conclude that there is no evidence for a sig-
nal and follow with a discussion of a particularly interesting non-detection of GRB 150323A.
We discuss the implications of this non-detection on the energetics and ambient environment
of this burst. We conclude that the VERITAS observations might indicate gamma-ray bursts

taking place in the dense wind of Wolf-Rayet stars.
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largest difference between the curves is found across all X values and denoted
by a black arrow. The length of this arrow is the test statistic. Taken from

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test. . . . . .. ... ...

The Swift-BAT lightcurve for GRB 150323A, showing both the precursor and
the main emission period. The different coloured plots correspond to various
energy bands observed by BAT as indicated in each subplot. Taken from the

batgrbproduct analysis page: http://gcn.gsfc.nasa.gov/notices_s/635887/BA/. . .

CTA will bring a great improvement in sensitivity in comparison to current-
generation IACT arrays. This fact combined with a lower energy threshold and
other improvements, will drastically increase our ability to detect and study
gamma-ray bursts. Fermi-LAT will still be of vital importance due to its large
sky coverage and sensitivity at 10s of GeV and below. From the official CTA

webpage: https://www.cta-observatory.org/science/cta-performance/. . . . . . .
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Introduction

Gamma-ray bursts (GRBs) were discovered accidentally in the 1960s by the VELA satellites
(Klebesadel et al., 1973). They are the brightest sources of electromagnetic radiation known
in the universe, releasing an energy on the order of 10°! erg in a short timescale of seconds to
minutes (as observed on Earth). At least some events have been definitively associated with
a supernova, and some others—shorter in timescale—are believed to be the result of mergers of
compact objects. The underlying mechanisms responsible for the great variability and versatile
nature of the observed prompt emission light curves are still largely unkonwn (Kumar and

Zhang, 2015).

Very high energy (VHE) gamma-rays have yet to be detected from a GRB. This is likely due to
a combination of technical constraints (slewing time, limited field of view), and the scattering
of distant VHE gamma-rays by the ambient extragalactic background light, which greatly at-
tenuates distant gamma-ray sources. A detection of VHE emission is a crucial aspect of model
verification, and in particular can allow one to gain insight into the properties of the circum-burst

medium (CBM) as well as the energetics of the burst.

This work begins with an introduction to VHE astronomy and gamma-ray burst science. In

Chapter 1 we introduce the basic techniques and instruments that observe the gamma-ray sky,

XXV
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with a special focus on the Very Energetic Radiation Imaging Telescope Array System (VER-
ITAS), an array of Imaging Atmospheric Cherenkov Telescopes (IACTs) located in southern
Arizona. In Chapter 2 we summarize some of the most important results on gamma-ray bursts
obtained since they were first discovered in the 1960s. We then discuss processes that might
lead to VHE emission, as the ejecta of the burst interact with the ambient medium, and what

might be learned from either a detection or a non-detection of such emission.

The following chapters contain our original work: we first focus on improving IACT capability
for detecting and analyzing GRBs. We then use our new techniques to analyze promising GRB

data observed by VERITAS and to interpret the results.

In Chapter 3, we discuss the development of a novel test statistic for detecting and characteriz-
ing transient and variable gamma-ray sources, by use of maximum likelihood estimation. We
first tackle the case of a time-independent background to derive a fundamental and elegant test
statistic, and later expand our technique to a more realistic case involving IACT background
rates which could change during the course of an observation. In Chapter 4, we discuss the
implementation and testing of this technique on VERITAS software, by use of both data and

Monte Carlo simulations.

In Chapter 5, we explore ways of improving the angular reconstruction of events, with par-
ticular attention to observations conducted at large zenith angles. GRBs are known to occur
isotropically in the sky, and thus most VERITAS GRB observations happen at what we con-
sider large zenith angles (> 45deg). Observation of other, non-transient, gamma-ray sources
at large zenith angles are typically avoided due to their detrimental effect on IACT sensitivity.

We generalize on work done by others for angular reconstruction at large zenith angles, and test



Introduction XXVil

a new approach that combines multiple algorithms into a single one for optimal response in a

variety of circumstances.

In Chapter 6, we select a collection of promising VERITAS observations and analyze them us-
ing our time-dependent test statistic. We design a priori collective statistical tests that could
extract a potentially weak signal present in multiple bursts. We find no detection in any indi-
vidual observation or collective test. We then focus our attention on the particularly limiting
non-detection of GRB 150323 A. We discuss the upper limit obtained for this burst first in an
empirical context, showing that it is fainter than one would expect from established GeV results.
Then, we discuss how the upper limit constrains the CBM environment and the energetics of

this burst.



Chapter 1

TACT array technology, with an emphasis
on VERITAS

1.1 Introduction

The current generation of Imaging Atmospheric Cherenkov Telescope (IACT) arrays are the
product of a rich history of experimentation in an attempt to observe and characterize astro-

physical gamma-rays (Weekes, 20006).

In 1948 P. Blackett calculated that about 0.01% of the night-sky light is produced by Cherenkov
radiation derived from cosmic-rays (Blackett, 1948). The process through which this happens
is depicted in Figure 1.1: the incoming cosmic-ray particle produces a cascade of charged ultra-

relativistic particles, travelling faster than the local (atmospheric) speed of light and producing
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FIGURE 1.1: A cartoon of cosmic-ray-produced Cherenkov radiation, drawn by J. V. Jelley in

1993 and displayed by T. Weekes in Weekes (2006). A cosmic-ray or y-ray impinges on the

atmosphere and produces a shower of relativistic particles, some of which charged. The charged

particles in the shower produce Cherenkov radiation which can be detected on the ground by a
simple dish and receiver.

Cherenkov radiation as a result (Cherenkov, 1934). This emission can be detected through a

simple setup such as a parabolic mirror and a photomultiplier tube.

The first such detection of Cherenkov light from cosmic rays is due to W. Galbraith and J. V. Jel-
ley in their groundbreaking experiment in 1952 (Galbraith and Jelley, 1953). The experimental
setup was remarkably simple with a small parabolic mirror and a photomultiplier tube placed
inside of a dustbin (Figure 1.2). The detector was placed inside of an existing array of Geiger-
Miiller (G-M) tubes. Through a series of tests using an oscilloscope and a trigger connection
to the G-M tube array, Cherenkov radiation was found and was strongly (and significantly)

correlated to radiation detected by the G-M tubes.



IACT Technique 3

FIGURE 1.2: The detector used by Galbraith and Jelley for the first detection of Cherenkov

radiation produced by cosmic rays. It consists of a parabolic mirror and a photomultiplier

tube at its focus, placed inside of a dustbin for protection from ambient light. Taken from
https://timeline.web.cern.ch/air-cherenkov-discovery-galbraith-jelley.

This new approach to detecting cosmic-rays had a lot of promise. One principal reason is the
ability of optical detectors to observe a narrow field of view. An ability to observe Cherenkov
light in a particular direction (taking into account the highly directional nature of atmospheric

Cherenkov radiation) is very appealing in terms of the possibility of detecting sources of gamma-

rays and characterizing their physics.

One major hurdle stood in the way of Cherenkov astronomy: It was already well known at
the time that charged astrophysical cosmic-rays vastly outnumber gamma-rays (Cronin, 1999).
Since charged particles are bent in magnetic fields on their way to Earth, they do not pro-
vide easily useful information on their direction of origin and on the physical nature of their
sources. They also make it exceedingly difficult to detect gamma-ray sources, by creating a

