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ABSTRACT

The techniques employed to study stars often characterize them as point sources due to

the limited spatial resolution and extremely small size of most stars in the sky. To spatially

resolve stars, the preferred method is interferometry. Modern astronomical interferometric

observatories work upon the principle of Michelson interferometry and have been used

with great success, particularly in the last two decades, in advancing our knowledge of

stellar astrophysics. The emergence of arrays of large diameter optical telescopes and

advancement of high-speed digital electronics have revived interest in the once abandoned

astronomical technique of intensity interferometry for high angular resolution observa-

tions of stars.

An experimental system using imaging air Cherenkov telescopes (IACTs), originally

designed for gamma-ray astronomy, was developed for use as an intensity interferometer.

This system was successfully deployed onto the four IACTs of the Very Energetic Radiation

Imaging Telescope Array System (VERITAS) located near Tucson, Arizona, USA at the

Fred Lawrence Whipple Observatory. Stellar angular diameters of the two bright B spectral

type stars β CMa and ε Ori were measured with an improved uncertainty of less than

5 %, and both were found to be in agreement with past measurements. The observations

demonstrated the capability to readily scale intensity interferometry measurements onto

an array of several telescopes, with implications for future IACT observatories that will

employ many more telescopes with larger baselines advancing the current capabilities of

SII observations.

Studies with current and future systems can be used to study several interesting stellar

objects and are particularly well suited for characterizing the hottest stars. Generally these

include the spectral types O, B, and A, which are still relatively challenging to spatially

resolve today given their rarity and typically very small angular sizes. Potential scientific

programs include surveying the angular diameters of hot stars, observing the oblation and



temperature gradients of rapidly rotating stars, characterizing the orbital and individual

component properties of short period binary systems, and perhaps even performing imag-

ing studies to reveal hot and cold spots on stellar surfaces.
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CHAPTER 1

STELLAR INTERFEROMETRY

1.1 Introduction
Our ability to resolve spatial features of astrophysical objects is a core driver in the

study of the cosmos. From Galileo’s observations of Saturn’s rings in 1610, to the extremely

large collection of captivating and detailed images of galaxies produced using modern

observatories, improving our angular resolution capabilities has enriched our scientific

understanding of the universe and conveyed the fascinating beauty of space to the general

public. Despite the immense technological development of astronomical observatories,

it remains significantly challenging to spatially resolve a large fraction of stars with a

resolution smaller at scales smaller than the diameter. Only a handful of stars have actually

been “imaged,” although the number has been growing over the last few years. This is due

to the extremely small angular extent of most stars in the sky. Indeed, most stars are treated

as point sources of light, and information about them is generally extracted through the

time evolution of the light intensity and spectrum of the source. By spatially resolving

stars, complex phenomena that governs their dynamics can be revealed and then used to

further our understanding of stellar physics.

The Rayleigh criterion states that the angular resolution of a telescope is proportional

to the wavelength of the light divided by the diameter of the mirror, i.e., θ ∼ λ/D (Hecht,

2010). Most stars exhibit an angular diameter on the order of 1 milli-arcsecond requiring

a telescope with ∼ 100 m diameter at a visible wavelength of 500 nm. To resolve stellar

features at 1/10th of the diameter then requires a telescope with a diameter of 1 km.

Clearly, construction of such an optical telescope is unfeasible, but these resolutions can be

obtained using a synthetic aperture through interferometery. Interferometry makes use of

multiple, spatially-separated telescopes in combination to achieve an angular resolution

that is effectively equivalent to that of a single telescope with a diameter equal to the

separation of the telescopes (Labeyrie et al., 2006). The angular resolution then goes as
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∼ λ/B where B is the separation of the telescopes.

Current state of the art optical interferometry observatories all utilize Michelson inter-

ferometry, often referred to as “amplitude” or “direct” interferometry. An alternative to

direct interferometry (DI), and the focus of this work, is “stellar intensity interferometry”

(SII). SII was originally pioneered in the 1950s by Robert Hanbury-Brown and Richard

Q. Twiss, culminating with construction and operation of the Narrabri Stellar Intensity

Interferometer (NSII) that operated from 1963 to 1974 (Hanbury Brown, 1974). After the

observations of the NSII, SII was abandoned in astronomy, but has been revived over the

past decade. Largely, this is due to the possibility to outfit current and future observatories

with SII capabilities (LeBohec and Holder, 2006; Pilyavsky et al., 2017a) leading to several

independent efforts towards a modern intensity interferometer (Tan et al., 2016; Zampieri

et al., 2016; Weiss et al., 2018; Zmija et al., 2020), with successful on-sky measurements of

correlated starlight intensity fluctuations (Guerin et al., 2017, 2018; Matthews, 2019; Acciari

et al., 2020). Notably, astrophysical measurements are being performed with distance

calibration to the luminous blue variable P Cyg (Rivet et al., 2020) and stellar angular

diameter measurements of two bright stars (Abeysekara et al., 2020). Many of these ef-

forts were spawned due to the realization that imaging air Cherenkov telescope (IACT)

arrays used in ground-based gamma-ray astronomy were also well-suited for performing

SII measurements (LeBohec and Holder, 2006). These observatories employ very large

telescopes, each typically greater than 10 m in diameter, and are dispersed in an array with

separations between telescopes ranging from tens to hundreds of meters, thus making

them capable for SII studies. Simulations of SII with IACT arrays demonstrated the feasi-

bility of performing SII observations of stars several magnitudes fainter than the NSII, with

limiting magnitudes comparable to current OAI observatories (Rou et al., 2013). Chapter

1 presents an overview of the SII technique, its application in astronomy, and presents

scientific motivation for pursuing a modern SII observatory. Furthermore, particular con-

siderations for implementing an SII system onto IACT arrays arise due to unique optical

properties of IACTs, and the implications of these constraints are reviewed.

The core focus of this work was towards the development of an experimental system

that is now used for SII observations during bright moon periods at the Very Energetic

Radiation Imaging Telescope Array System (VERITAS) gamma-ray observatory. The basic



3

principles of an SII instrument were first demonstrated in the laboratory using a pseudo-

thermal light source generated from scattered laser light. The tests were based a similar

laboratory experiment that demonstrated SII observations of an artificial star using an

array of “telescopes” connected only electronically (Dravins et al., 2015). Temporal and

spatial coherence tests separated detectors were performed for several laboratory sources

that mimicked single and binary star systems. The results of these initial tests are presented

in Chapter 2. However, the expected signal for astrophysical starlight exhibits a signal-to-

noise ratio that is several orders of magnitude lower than for the psuedo-thermal light

source due to significant differences in the temporal coherence time. To more accurately

represent starlight, light from an Hg arc-lamp was substituted for the psuedo-thermal

light source. The coherence time, and therefore the signal-to-noise, is comparable to stellar

sources, allowing it to serve as a more valid test of the instrumentation. Significant chal-

lenges were encountered in measuring the coherence properties of the arc-lamp source

due to the effects of radio-frequency interference leading to spurious correlations. A back-

ground correlation measurement was performed by measuring the light in orthogonal po-

larizations, or at large detector separations where coherence was destroyed, but spurious

correlations remained. The inclusion of the background subtraction allowed us to detect

the spatial coherence of the arc-lamp source demonstrating a working SII laboratory setup.

The coherence was measured in two separate regimes, both at high flux using correlations

of a continuous current from the detector, and at low flux, where individual photons could

be identified. These results on the measurements on the coherence of thermal light are

presented and shown in Chapter 4.

Once a working laboratory setup with a thermal light was demonstrated, the system

was scaled to allow for operation on the VERITAS telescopes. Chapter 5 provides a de-

scription of the instrumental setup, including discussions of the camera, data acquisition

system, correlator, and data analysis. Initial commissioning was performed in Fall 2018

with the first on-sky tests beginning in December 2018. Coherent fluctuations between

two of the VERITAS telescopes were seen in January 2019 of the two sources γ Orionis

and κ Orionis. Additional SII capabilities were then installed on the other two VERITAS

telescopes, enabling full 4-telescope SII observations. Observations with the system have

been ongoing, and recent results are measured the stellar angular diameter measurements
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of the two bright blue giant and blue supergiant stars β CMa and ε Ori with a precision of

less than 5% (Abeysekara et al., 2020).

1.1.1 Brief historical context

In 1921, Albert A. Michelson and F. G. Pease measured the stellar angular diameter of

α Orionis (Betelgeuse) using a 20 ft. stellar interferometer located on the top of Mount

Wilson in California (Michelson and Pease, 1921). This was the first time the angular

diameter measurement was performed for a star other than our own Sun, marking the

birth of observational stellar interferometry. The same interferometer was then used to

measure the angular diameters of six other stars (Pease, 1921a,b) all on the order of tens

of mas. In an attempt to increase the number of measurable stars, Pease built a stellar

interferometer with a baseline of up to 50 ft thus in principle allowing for angular diameter

measurements of smaller stars. However, he was unable to attain consistent results due

to the effects of atmospheric turbulence. It was not until almost 30 years later with the

development of the intensity interferometer that the problem of atmospheric turbulence

could be overcome.

The intensity interferometry technique is relatively insensitive to path length fluctua-

tions induced by the Earth’s atmosphere and therefore allows for arbitrarily large base-

lines. After the theoretical basis of the technique was formally developed by Hanbury-

Brown and Twiss, first for radio-waves (Hanbury Brown and Twiss, 1954) and then for

optical light (Hanbury Brown and Twiss, 1957), a “pilot model” of an optical stellar inter-

ferometer was built by Hanbury-Brown using borrowed Army searchlight mirrors. This

interferometer was successfully used to measure the angular diameter of α Canis Majoris

(Sirius). These successes, albeit not without controversy, paved the way towards the fund-

ing and construction of the Narrabri Stellar Intensity Interferometer (NSII). The principal

achievement of the NSII was the measurement of the stellar angular diameter of 32 stars

(Hanbury Brown et al., 1974a), expanding the total number of known angular diameters

from Michelson and Pease by over a factor of 6. There were also several other notable

achievements. The orbital parameters, individual stellar angular diameters, and even

the distance to the interacting binary star system α Virginis (Spica) were all measured

through NSII observations that spanned from 1966 to 1970 and were performed jointly
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with spectroscopic observations (Herbison-Evans et al., 1971). Observations of the system

γ Velorum revealed an extended emission-line region that was approximately five times

that of the star photosphere (Hanbury Brown et al., 1970). Their work established the

theoretical foundation for many important topics of stellar physics that can be studied with

an interferometer, including stellar limb-darkening, rapid rotators, estimation of effective

temperatures from angular diameters, binary systems, and Cepheid variables (Hanbury

Brown and Twiss, 1958a). Eventually, the capabilities of the NSII were exhausted after the

observations of all stars in the Southern hemisphere with visible band magnitudes brighter

than +2.5. NSII observations of a star near the limiting magnitude typically required over

75 hours. Additional limitations in the electronics prevented reasonable observations of

dimmer stars. While plans for a future stellar intensity interferometer were ongoing in the

early 1970s, technical developments in direct interferometry provided superior sensitivity

with much smaller telescopes, and the intensity interferometry technique was abandoned

in astronomy.

In 1970, Antoine Laberyie described the first of these breakthroughs with the creation of

speckle interferometry (Labeyrie, 1970). Simply put, the effects of atmospheric turbulence

can be removed by recording images at timescales faster than atmospheric turbulence,

on the order of a few tens of ms for visible light. Such rapid observations “freeze out”

the atmosphere, and diffraction-limited imaging of the telescope can be achieved. Fur-

ther developments from Laberyie led to the measurement of the visibility of interference

fringes resulting from the superposition of light from two optical telescopes separated by

12 meters during observations of α Lyrae (Vega) (Labeyrie, 1975). These observations were

the first successful demonstration of a Michelson interferometer since the observations of

Michelson and Pease made almost 50 years earlier and set off a resurgence of interest in

the technique.

The realization of optical long baseline interferometry with multiple apertures (tele-

scopes) via the amplitude interferometry technique has been developed with amazing

success. There are now several major observatories world-wide including the Center for

High-Angular Resolution Astronomy (CHARA),1 the Navy Precision Optical Interferome-

1http://www.chara.gsu.edu/
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ter (NPOI),2 and the Very Large Telescope Interferometer (VLTI).3 Some notable results in-

clude the angular diameter measurements of hundreds of stars (Duvert, 2016), observation

of periodic changes in the angular diameter of Cepheid variable stars (Kervella et al., 2017),

and mapping the orbits of stars at the center of the Milky Way (Gravity Collaboration et al.,

2018). Stellar imaging is now possible for numerous types of stellar systems and used to

observe the oblation of rapidly rotating stars (Che et al., 2011), expansion of nova ejecta

(Schaefer et al., 2014), eclipse of a star by a companion (Kloppenborg et al., 2010), and

convective cells on giant stars (Paladini et al., 2018). For a more comprehensive review

of the capabilities and results produced with modern interferometers see Ridgway et al.

(2019) and van Belle et al. (2019).

1.2 Coherence properties of quasi-monochromatic light
1.2.1 Temporal coherence

To better understand the basic principles of an intensity interferometer, we first review

the properties of quasi-monochromatic light. A quasi-monochromatic source emits light

over a finite bandpass ∆λ that is sufficiently narrow such that ∆λ/λ0 << 1 where λ0 is the

center-wavelength. Writing it in terms of the angular frequency ω = 2πc/λ, the electric

field can be described as a superposition of harmonic functions

E(t) =
∫

∆ω
E(ω) cos (ωt + φ(ω)) dω (1.1)

where E(ω) and φ(ω) are frequency dependent amplitude and phase factors. The in-

tensity of the field can be calculated as I(t) ∝ |E(t)|2. In the optical/visible domain,

the oscillations of the electric field are far too rapid to detect, and therefore any practical

measurement device averages the intensity over some time duration T where the averaged

intensity is

〈I(t)〉 ∝
1
T

∫ T

0
|E(t)|2dt. (1.2)

For monochromatic light, the electric field will oscillate at a frequency ν = c/λ and

2http://www2.lowell.edu/rsch/npoi/index.php

3https://www.eso.org/sci/facilities/paranal/telescopes/vlti.html
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the intensity is given by the square of the electric field. For quasi-monochromatic light, a

time-varying amplitude of the electric field arises due to the beating of different frequency

components. The timescale of these amplitude variations is commonly referred to as the

light coherence time and corresponds to the optical bandwidth of the light τc = 1/∆ν.

For the case of a simple rectangular bandpass, the coherence time written in terms of the

wavelength is

τc =
λ2

c∆λ
. (1.3)

The electric field of a quasi-monochromatic light was simulated for λ0 = 500 nm and a

bandpass of ∆λ = 1 nm and is shown in Figure 1.1. The integral in Equation 1.1 was

performed by summing over 10000 uniformly spaced frequencies within the optical band-

width. A random phase was given to each frequency component uniformly distributed

between 0 and 2π radians. Additionally, the relative intensity, shown as the dotted black

line, is calculated over an integration period that is several times the oscillation time of the

field λ0/c. In Figure 1.1, the rapid oscillations are shown in the inset figure that displays

a smaller time window. Over longer timescales, fluctuations of the field amplitude and

intensity can be observed over timescales of τc. These slower fluctuations demonstrate that

interference effects persist even in the case of a finite bandpass with random phases. The

fluctuations manifest themselves as correlations of light intensity that can be measured

experimentally by different detectors pointed at the same source. So far, only temporal

coherence has been discussed and in the next section the effects of spatial coherence are

described to illustrate how light intensity correlations vary with respect to the separation

of a pair of detectors.

1.2.2 Spatial coherence

The previous section illustrates how quasi-monochromatic light gives rise to tempo-

rally coherent fluctuations in the electric field amplitude and overall intensity. The current

section extends these ideas to the concept of spatial coherence, or in other words, how

these intensity fluctuations change in space for a given spatial configuration of a quasi-

monochromatic light source. Consider the scenario depicted in Figure 1.2, consisting of

two quasi-monochromatic point sources with a separation a illuminating two detectors at a

distance L. Here we assume a far-field approximation a� L so the far-field approximation
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is applicable. In Section 1.2, the electric field of a quasi-monochromatic source was shown

to undergo amplitude and phase variations. Including the effects of propagation, the field

from either of the sources can be written

E(r, t) = A(t) cos (ωt + φ(t)) (1.4)

where ω is the mean angular frequency, and A(t) and φ(t) are the time-dependent ampli-

tude and phase factors. The total electric field at one of the detectors will be given by the

superposition of the individual field contributions from each source, where for example,

the field at D1 is

E(D1, t) = E(r11, t− t11) + E(r21, t− t21) (1.5)

where t11 and t21 are the light travel times from the respective sources to the detector. The

averaged intensity is then

〈I(D1, t)〉 = 〈|E(r11, t− t11)|2〉+ 〈|E(r21, t− t21)|2〉

+ 2 Re{〈E∗(r11, t− t11)E(r21, t− t21)〉}. (1.6)

The first two terms on the left hand side of Equation 1.6 are simply the averaged intensities

received from either of the point sources in the absence of the other. To simplify the

notation, we write I(r11) = 〈|E(r11, t)|2〉 and I(r21) = 〈|E(r21, t)|2〉. The last term in the

above equation results from the interference of the electric fields from both sources and

includes the so-called mutual degree of coherence given as the time-averaged correlation

of the electric fields from both sources,

Γ(r11, r21, τ) = 〈E∗(r11, t)E(r21, t + τ)〉 (1.7)

where τ = t1 − t2 is the relative time delay between the arrival of the fields measured

from the point D1. Both of the electric fields can be described by Equation 1.4, and after

substitution into Equation 1.7, the mutual degree of cohererence is

Γ(r11, r21, τ) = 〈A11(t)A21(t) cos (ωt + φ(t)) cos (ω(t + τ) + φ(t + τ))〉, (1.8)

and after use of the trigonometric identity cos θ cos Φ = cos(θ − Φ) + cos(θ + Φ) we

obtain,
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Γ(r11, r21, τ) = 〈A11(t)A21(t) cos (ωτ + φ(t)− φ(t + τ))〉

+〈A11(t)A21(t) cos (2ωt + ωτ + φ(t + τ))〉. (1.9)

The latter time-average term in the above equation can be ignored, as it goes to zero over

any practical observation time. The former term remains and so the equation reduces to

Γ(r11, r21, τ) = 〈A11(t)A21(t) cos (ωτ + ∆φ(t))〉 (1.10)

where ∆φ(t) = φ(t) − φ(t + τ). Under the assumption that the amplitude and phase

terms are constant over the duration of the integration, and that the amplitudes are equal,

A11 = A21 = A, the mutual coherence is

Γ(r11, r21, τ) = A2 cos (ωτ + ∆φ) . (1.11)

Substitution of Equation 1.11 into Equation 1.6 then gives

〈I(D1, t)〉 = 2A2(1 + cos(ωτ + ∆φ)). (1.12)

Rewriting τ = (r11 − r21)/c, and arbitrarily assuming ∆φ = 0, the averaged intensity is

〈I(D1, t)〉 = 2A2
(

1 + cos
ω(r11 − r21)

c

)
. (1.13)

The above shows that the intensity of the field is dependent on the relative path length

that is maximized at a value of 4A2 when ω(r11 − r21) = 2πn, where n is a integer, and

minimized with a value of 0 when ω(r11 − r21) = πn. In terms of the path length, these

criteria correspond to integer and half-integer multiples of the mean wavelength, such

that the maxima are at r11 − r21 = nλ and the minima at r11 − r21 = nλ/2, respectively,

resulting from the constructive and destructive interference of the two fields.

Now consider the inclusion of detector 2 at a position D2 as shown in Figure 1.2. The

mutual coherence function observed between the two positions will be given by

Γ(D1, D2, τ) = 〈E∗(D1, t)E(D2, t + τ)〉 (1.14)

that would arise from the superposition of the fields at D1 and D2. After normalization,

the mutual degree of coherence is related to the complex degree of coherence by
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γ(D1, D2, τ) =
Γ(D1, D2, τ)√
I(D1)

√
I(D2)

. (1.15)

If the light received at the points D1 and D2 is considered to be coherent (i.e., γ > 0),

then the superposition of those fields will lead to interference fringes. The fringe contrast,

commonly known as the visibility is given by

V =
〈I〉max − 〈I〉min

〈I〉max + 〈I〉min
(1.16)

where 〈I〉max and 〈I〉min are the maximum and minimum values of the intensities produced

in the interference pattern. For a fully coherent source γ = 1, the intensities will vary from

a value of zero to a maximum of 4I0, where I0 is the average intensity received from one

of the sources, and assumed to be equal for both. In the case of partial coherence where

0 < γ < 1, the visibility of the fringe pattern is reduced. In the general case where the

intensities at D1 and D2 are equal, the visibility then directly measures the modulus of the

complex degree of coherence

V(D1, D2) = |γ(D1, D2)|, (1.17)

and therefore can be used to study the temporal and spatial properties of the source. Most

optical interferometers rely on the measurement of the visibility to study the sources of

interest. Astronomical optical interferometers perform this by bringing the light collected

at separate telescopes to a single location for combination. The visibility between all

possible telescope pairs can be observed to study the source over a range of angular scales

that are inversely proportional to the telescope baselines.

1.2.3 Measuring coherence from intensity correlations

The previous section shows how the mutual degree of coherence can be used to mea-

sure the spatial properties of a quasi-monochromatic light source by superimposing the

electromagnetic field in the light collected at two separate locations. As first demonstrated

by Hanbury-Brown and Twiss (Hanbury Brown and Twiss, 1956), the coherence proper-

ties of the source can also result in correlated intensity fluctuations. Consider again the

example shown in Figure 1.2, where the intensity at the point D1 is given by Equation 1.6.

A similar procedure can be used to derive the intensity at the point D2 which is given by
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〈I(D2, t)〉 = 〈|E(r22, t)|2〉+ 〈|E(r12, t)|2〉+ 〈E∗(r22, t)E(r12, t)〉. (1.18)

The last term in the above equation results from the interference of the electric fields

from both sources. The manner in which they interfere is dependent on the detector

locations. When the detectors are at the same location, the electric fields and intensities

will follow the same time evolution. When the separation between the sources is non-zero,

the electric field at either detector is modulated due to shifts in the relative path length to

both sources. For D1 the relative path length difference is ∆1 = |r11| − |r21| and similarly

for D2 the path length is ∆2 = |r12| − |r22|.
To better illustrate the concept of spatial coherence and intensity correlations, the sce-

nario depicted in Figure 1.2 was simulated with partially-coherent light for a central wave-

length of λ = 500 nm over a bandwidth of ∆λ = 10 nm. Multiple frequency compo-

nents were generated by summing over 10000 frequencies each with random phase. The

intensity at each detector, given by Equation 1.5, was simulated over a duration many

times greater than the coherence time of the light. The separation of the sources was

set to a = 5 µm and the distance to the detectors was set to L = 20 m. The left side of

Figure 1.3 shows the simulated intensities at both detectors through the black and colored

lines, which are varied over a range of baselines separated by a vertical offset. The right

side of the figure shows the cross correlation between the simulated intensities of both

detectors as a function of the time-lag. For small detector separations, there will be an

excess of correlation at timescales less than the coherence time attributed to the coherent

fluctuations of the different sources. As the detector separation is increased, the intensities

begin to decorrelate until the separation induces a relative path length difference of a half

a wavelength |∆1 − ∆2| = λ/2 at which point the intensities are completely uncorrelated.

1.2.4 The van Cittert-Zernike theorem

Consider a quasi-monochromatic extended source with an angular brightness distribu-

tion S(l, m) over the orthogonal coordinates l and m that is observed by a pair of detectors

at positions in a plane parallel to the source plane. The van Cittert-Zernike theorem states

that the mutual degree of coherence observed between the detectors is given by the Fourier

transform of the angular brightness distribution
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Γ(u, v) =
∫ ∫

S(l, m)e−2πi(ul+vm)dl dm (1.19)

where u and v are separations given in units of the number of wavelengths in the orthog-

onal coordinates of the detector plane, such that u = Bu/λ and v = Bv/λ, where Bu and

Bv are the detector baselines along the u and v coordinates parallel to the l and m axes. If

the source angular brightness distribution is normalized by the total intensity, the complex

degree of coherence is obtained

γ(u, v) =
∫ ∫

S(l, m)e−2πi(ul+vm)dl dm∫ ∫
S(l, m)dl dm

. (1.20)

Therefore, if one knows the angular brightness distribution, the expected complex de-

gree of coherence can be calculated. Conversely, if one measures the complex degree

of coherence over a sufficient number of points in the (u,v)-plane, the source angular

brightness distribution can be determined by an inverse Fourier transform. In practice,

the sampling of the (u,v)-plane is limited by the number of detectors, and for intensity

correlations between two detectors the phase information is lost such that interferometric

measurements can only provide the modulus |γ| of the degree of coherence. To overcome

these limitations, sources are often modeled with some apriori assumptions of the general

shape. This procedure is known as visibility modeling, used extensively in interferometric

observations.

A widely used model for stellar sources is the uniform-disk that approximates the star

as a disk with uniform illumination. Due to the rotational symmetry of the source, the

degree of coherence can be written in terms of the radial baseline of the detectors B =√
B2

u + B2
v. For a star of angular diameter θ, the degree of coherence for a uniform-disk

model is found as

γ(B) = 2
J1(πθB/λ)

(πθB/λ)
(1.21)

where J1 is the Bessel function of the first kind. In the equation above, there is a first

null γ = 0 at a separation of B = 1.22λ/θ, often referred to as the resolving baseline.

The relationship also gives the well-known criteria for the angular resolution of a circular

optical element θ = 1.22λ/D, substituting B = D for the diameter of the element. Figure

1.4 shows plots of |γ|2 as a function of r for several uniform-disk sources with diameters

ranging from 0.1 to 10.0 mas, typical of most stars. Interferometric measurements of |γ|2
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over a range of baselines can used to constrain the value of the stellar diameter through

fits using Equation 1.21.

The photospheres of stars are not perfect uniform-disks, and more detailed modeling

of the stellar surface is needed to accurately describe them. One common extension to the

uniform-disk model is to include the effects of limb-darkening. Limb-darkening refers to

the reduction of the observed intensity from the center of the star to its limb. There are

several forms of limb-darkening models that differ in the radial dependence of the inten-

sity reduction, including linear, quadratic, and exponential approximations. A commonly

used linear limb-darkening model is used, where the radial intensity profile I is given by

I(µ) = I(0)(1− uλ(1− µ)) (1.22)

where uλ is a wavelength-dependent linear limb-darkening coefficient, and µ is the cosine

of the angle subtended between the line of sight and point on the stellar photosphere. The

corresponding squared coherence is (Hanbury Brown et al., 1974b)

|γ(x)|2 =

(
1− uλ

2
+

uλ

3

)−2 (
(1− uλ)

J1(x)
x

+ uλ

√
π/2

J3/2(x)
x3/2

)2

(1.23)

where

x =
πθLDB

λ
. (1.24)

1.3 Working principles of a stellar intensity interferometer
Figure 1.5 shows the basic principles of a stellar intensity interferometer. The starlight

intensity fluctuations recorded at two telescopes are brought together and correlated to

measure the spatial degree of coherence. To compensate for the optical path delay τ

between the telescopes, a delay can be inserted between the telescopes to perform the

correlation at equal time. Mandel (1963) shows that the normalized intensity correlation

of fully polarized light fluctuations is equal to the the squared degree of coherence

〈∆I1(t)∆I2(t + τ)〉
〈I1〉〈I2〉

= |γ12(τ)|2 (1.25)

where ∆I(t) is the fluctuating component of the light intensity I(t) = 〈I〉 + ∆I(t). A

modern convention often used in quantum optics, condensed matter, and particle physics

fields denotes the correlation function as g(2) that can be written in terms of temporal and
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spatial components

g(2)(τ, r1, r2) =
〈I1(t, r1)I2(t + τ, r2)〉
〈I1(t, r1)〉〈I2(t, r2)〉

. (1.26)

For thermal light, this intensity correlation function is given by the Siegert relation

(Siegert, 1943)

g(2) = 1 + |g(1)|2 (1.27)

where g(1) is the first-order correlation function. Rewriting the light intensities in terms of

the mean and fluctuating components as done previously, the following equivalences can

be found,

g(2) − 1 = |g(1)|2 =
〈∆I1(t, r1)∆I2(t + τ, r2)〉
〈I1(t, r1)〉〈I2(t, r2)〉

. (1.28)

By comparison of the Equation 1.28 with Equation 1.25, we see g(1) = γ such that the

first-order correlation function is equivalent to the complex degree of coherence. Lastly, to

simplify notation we introduce

∆g(2) = g(2) − 1 =
〈∆I1(t, r1)∆I2(t + τ, r2)〉
〈I1(t, r1)〉〈I2(t, r2)〉

. (1.29)

In practice, the light intensity is recorded using an optical and electronic system with

finite temporal and spectral resolution that systematically affect the measured correlation.

Additional considerations need to be given to other factors including the finite size of

the mirrors and spurious correlated noise. In this section, some nonideal properties of a

practical SII system are reviewed.

1.3.1 Detector response time and optical bandwidth effects

An intensity interferometer must employ an optical system and photodetectors to mea-

sure the light intensity. The temporal and spectral properties of the instrumental sys-

tem will affect the measured value of the degree of coherence. In this section, a general

mathematical treatment of a practical SII system under a semiclassical approximation is

provided.

The response of a photo-detector to an incident photon is to produce a single photoelec-

tron due to the photoelectric effect. The single photo-electron is then amplified to generate
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a current pulse, which is large enough to be measured with an electronic system. The

output current J(t) of a detector with a single photo-electron time response k(t) exposed

to a light source can be written as

J(t) = ∑
j

k(t− tj) (1.30)

where tj are the arrival times of the photons. The average current produced by the detector

over some integration period is

〈J(t)〉 = α〈I〉Q (1.31)

where α is the detector quantum efficiency, 〈I〉 is the average light intensity in units of

photons / sec, and Q =
∫ ∞
−∞ k(t′)dt′ is the total charge produced by the detector due to

the emission of a single photoelectron. Mandel and Wolf (1995) in Chapter 9.8.1 show that

for the case of fast detectors, where the response time of the detector is much less than the

coherence time of the light, the correlation of the detector currents is

〈∆J1(t)∆J2(t)〉 ≈ α1α2Q2〈∆I1(t)∆I2(t)〉 (1.32)

where upon normalization by the average currents given by Equation 1.31,

〈∆J1(t)∆J2(t + τ)〉
〈J1〉〈J2〉

≈ 〈∆I1(t)∆I2(t)〉
〈I1〉〈I2〉

(1.33)

such that the normalized correlations of the detector currents are equivalent to the corre-

lations of the light intensity and thus also to the squared degree of coherence by Equation

1.25.

In the typical case of slow detectors, where the resolution time is much longer than

the coherence time of the light, Mandel and Wolf (1995) in Chapter 9.8.3, show that the

correlations of detector currents for an unpolarized thermal source is

〈∆J1(t)∆J2(t + τ)〉 = 1
2

α1α2〈I1〉〈I2〉|γ12|2Tc

∫
k(t′)k(t′ + τ)dt′ (1.34)

where Tc is the correlation time of the light. For simple optical bandwidth profiles (e.g.,

a rectangular bandwidth transmission), the expected correlation time can be given by

Equation 1.3. However, for more complicated profiles, a more general definition of the

correlation time is
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Tc =
∫
|γ(τ)|2 dτ =

∫
|φ(ν)|2 dν, (1.35)

relating Tc to the integral of the squared degree of coherence and by Parseval’s theorem,

is equivalent to the integral of the squared normalized spectral density φ(ν). The effective

bandwidth of the light can then be determined by the inverse of the correlation time.

After normalization of the Equation 1.3 by the average currents, the reduced correlation of

detector currents becomes

〈∆J1(t)∆J2(t + τ)〉
〈J1〉〈J2〉

=
1
2

Tc|γ12|2K(τ) (1.36)

where

K(τ) =
∫

k(t′)k(t′ + τ)dt′(∫
k(t′)dt′

)2 . (1.37)

The above equation allows for the characterization of the expected amplitude and tem-

poral dependence of the measured coherence peak from instrumental parameters. The

correlation time is given by the measured spectral density, generally set by the optical

filter bandwidth, but can also be dependent on the source spectrum and other frequency

dependent atmospheric and instrumental transmission factors. The latter term K(τ) in-

volving the integral over the pulse shape correlation determines the temporal dependence

of the measured correlation.

As an example, consider the case of a system that utilizes an optical filter with unity

transmission over a bandwidth ∆ν. Assuming that light spectral density S(ν) does not

change appreciably over the bandwidth of the filter, the normalized spectral density of the

light after transmission through the filter is

φ(ν) =
S(ν)∫
S(ν) dν

=
1

∆ν
, (1.38)

and after substitution into Equation 1.35 gives the correlation time as Tc = 1/∆ν. Now,

assume that the time response of the detector is a rectangular pulse of duration Tr. The

latter term of Equation 1.36 is then

K(τ) =
Tr − |τ|

T2
r

(1.39)

when |τ| < Tr and zero otherwise. The temporal dependence of the measured correlation

function is given by a triangular function reaching zero at values of |τ| = Tr peaking at
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τ = 0, with an amplitude
〈∆J1(t)∆J2(t)〉
〈J1〉〈J2〉

=
Tc

2Tr
|γ12|2, (1.40)

which after replacing the resolution time by the electronic bandwidth given by the Nyquist

criteria ∆ f = Tr/2, and writing the correlation time in terms of the optical bandwidth, we

obtain the commonly used relation

〈∆J1(t)∆J2(t)〉
〈J1〉〈J2〉

=
∆ f
∆ν
|γ12|2 (1.41)

that equates the measured correlation function at zero time-lag to the value of the squared

degree of spatial coherence multiplied by the ratio of the electronic to optical bandwidth.

Consider now that the detector time response is a Gaussian of unity amplitude with a

one standard-deviation width of σr. After derivation it can be shown that

K(τ) =
1

2
√

πσr
exp

(
− τ2

4σ2
r

)
, (1.42)

giving the temporal dependence of the cross-correlation as a Gaussian with a standard

deviation σ′r =
√

2σr. The equal-time correlation is now

〈∆J1(t)∆J2(t)〉
〈J1〉〈J2〉

=
Tc

4
√

πσr
|γ12|2. (1.43)

In either case where the detector time-response is approximated as a Gaussian or as a

rectangular pulse, the correlation peak width gives a measure of the effective temporal

resolution time of the system. This can be a convenient way to characterize nontrivial

temporal properties of the instrumental system that may include transit-time jitter of the

photodetectors, phase drift of the sampling electronics, or dispersion in the arrival time of

photons due to the optical system.

1.3.2 Effects of background light and dark current

In intensity interferometry observations it is necessary to consider the effect of back-

ground light as well as the detector signal current or count rate with no incident light.

The signal intensity output from a given detector can be modeled as I(t) = I?(t) + IB(t)

where I? is the starlight intensity, and IB is the total background intensity including both

background light entering the detector and detector dark current. After substituting the

expression for the total intensity into Equation 1.29, the normalized correlation becomes
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∆g(2) =
〈∆I?1 ∆I?2〉+ 〈∆I?1 ∆IB2〉+ 〈∆I?2 ∆IB1〉+ 〈∆IB1 ∆IB2〉

〈I?1 + IB1〉〈I?2 + IB2〉
. (1.44)

The cross-terms in the numerator represent the correlation between the starlight and back-

ground light and can generally be ignored as, in principle, these are independent from each

other. The latter term 〈∆IB1 ∆IB2〉 represents the correlation between the background light

fluctuations seen in both detectors. Several factors can cause this term to be non-zero, thus

systematically affecting the correlation measurement. For example, high energy cosmic

rays air that enter our atmosphere generate showers of UV/optical light that would gen-

erate correlations between separated telescopes. This effect was investigated by Hanbury

Brown and Twiss (Hanbury Brown and Twiss, 1958a) with the conclusion that it should

have no effect on intensity interferometry observations unless very wide spectral filters

(∆λ > 50 nm) are used on sources with visual magnitudes greater than 5. Under the

assumption that the fluctuations in the background light are uncorrelated or negligible,

the measured normalized correlation is

∆g(2) =
〈∆I?1 ∆I?2〉

〈I?1 + IB1〉〈I?2 + IB2〉
, (1.45)

and after solving for normalized correlation due to starlight intensity fluctuations alone,

i.e., ∆g(2)? = 〈∆I?1 ∆I?2〉/〈I?1〉〈I?2〉, Equation 1.45 is written

∆g(2) =
∆g(2)?

(1 + β1)(1 + β2)
(1.46)

where β is the ratio between the background to starlight intensity, i.e., β = IB/I? for each

of the respective detectors. Thus, the main effect of uncorrelated background light is to

reduce the correlation of starlight intensity fluctuations ∆g(2)? by a factor (1 + β1)(1 + β2).

In the case where the background light is negligible in comparison to the starlight, this

factor goes to 1 as expected.

1.3.3 Expectation of the correlation

The relationships shown in the previous section represent an idealized form of the

expected signal obtained for an intensity interferometer. When using actual instruments,

many parameters must be included that systematically affect the measurement of ∆g(2).

Hanbury Brown and Twiss derive an expression for the expected correlation c(d) between
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the outputs of two independent detectors considering several realistic parameters (Han-

bury Brown and Twiss, 1958b). The equation is modified4 and reproduced here

c(d) = 〈∆i1(t)∆i2(t)〉 = e2A1A2β0α1(ν0)α2(ν0)n2(ν0)σB0bν|Fmax|2Γ2(d) (1.47)

where A1 and A2 are the light collection areas, β0 is a polarization factor with β0 = 1

for unpolarized light and β0 = 2 for linearly polarized light, α(ν) is defined here as

the normalized transmission at a frequency ν over the entire optical system, including,

for example, atmospheric absorption, mirror reflectivity, spectral filter throughput, and

detector quantum efficiency, and n is the incident photon spectral density, in units of

ph s−1 m−2 Hz−1 where the spectral density is assumed to be equal at both detectors

(i.e., n = n1(ν) = n2(ν) ). The signal output for each of the detectors can be generally

written as i(t) = eA
∫

α(ν)n(ν)dν. Combining this expression with Equation 1.47, gives

the normalized correlation function of the signal outputs

〈∆i1(t)∆i2(t)〉
〈i1(t)〉〈i2(t)〉

= β0
α1(ν0)α2(ν0)n2(ν0)σB0bν|Fmax|2∫

α1(ν)n(ν)dν
∫

α2(ν)n(ν)dν
Γ2(d), (1.48)

where bν|Fmax|2 = ∆ fe f f is defined as the effective electronic cross-correlation bandwidth,

and σ is the normalized spectral density function

σ =
∫

α1(ν)n1(ν)α2(ν)n2(ν)dν/(B0α2(ν0)n2(ν0)). (1.49)

After substitution of Equation 1.49 into Equation 1.48, the normalized correlation becomes

〈∆i1(t)∆i2(t)〉
〈i1(t)〉〈i2(t)〉

= β0

∫
α1(ν)n1(ν)α2(ν)n2(ν)dν∫

α1(ν)n(ν)dν
∫

α2(ν)n(ν)dν
∆ fe f f Γ2(d). (1.50)

The term Γ2(d) is defined as the normalized correlation function and is given by

Γ2(d) =
∫
|γ(d, ν)|2α1(ν)n1(ν)α2(ν)dν∫

α1(ν)n1(ν)α2(ν)n2(ν)dν
, (1.51)

which accounts for the integration of the degree of coherence over a finite bandwidth at a

given telescope baseline. For randomly polarized light β0 = 1, and subsequently we can

draw an equivalence between the terms in Equation 1.51 and Equation 1.47 such that

4In the original publication, α is defined purely as the detector quantum efficiency but is generalized here
as the full optical throughput. Additionally, we assume that there are no losses in the correlator, and so the ε
parameter in the original equation is set to ε = 1.
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〈∆i1(t)∆i2(t)〉
〈i1(t)〉〈i2(t)〉

=
∆ fe f f

∆νe f f
Γ2(d) (1.52)

where the effective cross-correlation bandwidth is defined

∆νe f f =

∫
α1(ν)n(ν)dν

∫
α2(ν)n(ν)dν∫

α1(ν)n1(ν)α2(ν)n2(ν)dν
. (1.53)

The numerator describes the total intensity measured by each of the detectors, whereas the

denominator measures the degree of overlap in frequency. In the case where two different

narrow-band filters are used with non-overlapping transmission profiles, ∆νe f f goes to

infinity, causing the normalized cross-correlation measurement to go to zero. Additionally,

the above expressions quantifies the effect of spectral changes in the star due to variability

of the spectrum from the source, or perhaps due to attenuation in the atmosphere. Changes

that are uniform with respect to frequency do not affect the value of ∆νe f f , and therefore

the measured correlations.

1.4 Practical considerations for SII with imaging air Cherenkov
telescopes

IACTs are of an overall optical quality much less than what is standard for conventional

optical telescopes. The trade off is that very large light collection areas can be achieved

at a much lower cost. While the poor optical quality does not significantly affect their

operation as gamma-ray instruments, it does impose some restrictions on their capabilities

as intensity interferometers. The large point-spread-function (PSF) increases the back-

ground light levels, ultimately determining the observable limiting magnitude. This, along

with fast optics typically used in IACTs, makes narrowband filtering more complicated.

Additionally, the optics of some IACTs introduce a temporal dispersion amounting to a

signal bandwidth limitation.

1.4.1 Time-dispersion of photons

The geometry of some IACT optics introduce a dispersion in the arrival time of photons

that otherwise would arrive synchronously. The amount of dispersion is a function of

the telescope geometry. The VERITAS telescopes are based on the Davies-Cotton optical

design (Davies and Cotton, 1957), where the mirror is composed of 350 hexagonal mirror

facets, each with a radius of curvature of 24 m laid along a sphere with a radius of curvature
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of 12 m and centered on the focal point (Holder et al., 2006). This configuration introduces

a difference in the path length between photons that arrive at the center of the mirror in

comparison to those that arrive from further out in radius. Thus, the g(2)(τ) peak for many

different pairs of correlated photons would be smeared by the time-dispersion introduced

by the telescope optics.

The range in temporal dispersion can understood as the difference in flight time for

a pair of initially synchronous photons that, respectively, hit the center and edge of the

mirror. Figure 1.6 illustrates the basic geometry of the a primary reflecting surface that is

laid out on a sphere following

(x− Rc)
2 + r2 = R2

c (1.54)

where Rc is the radius of curvature of the mirror with x > 0 and |r| < rt where rt is

the telescope radius. The path length for a photon that initially moves through a point

(x = Rc, r) to the focus (x = Rc, r = 0) is

l(r) = Rc +
√

R2
c − r2. (1.55)

The light travel time is then τ(r) = l(r)/c. For an f/1 focal ratio, typical of IACT telescopes,

rt = Rc/2. The maximum difference in arrival time is then τ(r = 0) − τ(r = rt) =

Rc(1 −
√

3/2). Under this approximation for a dish equal to the size of the VERITAS

mirrors Rc = 12 m, the corresponding time-dispersion range is ∼ 5.4 ns.

While this sets the scale of the temporal dispersion, it is also important to consider

the distribution in time-differences for a large number of correlated photons as it affects

intensity interferometry observations. Consider a single pair of photons that originally are

synchronous (i.e., arrive at x = 0 at the same time). The path delay difference between

them is

∆τij = τ(ri)− τ(rj) (1.56)

where the pair of photons land on the radial positions ri and rj. An intensity interferometer

will average over a large number of correlated photon pairs each reaching the its respective

telescope at a random point. The measured correlation function is broadened by the

corresponding random difference in time that occurs for many of the correlated pairs. To

simulate this, Npairs = 100000 independent pairs of photons are generated where each pair
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is synchronous at x = 0 and the location of either photon is uniformly distributed located

within the area of the mirror. The difference in time of flight is calculated for each pair, and

the overall distribution of time differences is shown in Figure 1.7.

The time dispersion introduced by the optics sets the maximum signal bandwidth that

can be used to improve the signal to noise ratio (SNR) of the system. In principle, the SNR

is proportional to the square root of the electronic bandwidth, or equivalently, inversely

with the square-root of the time resolution. From these arguments, the time dispersion of

the VERITAS optics is of order ∼ 4 ns, such that increasing the signal bandwidth beyond

250 MHz does not provide any substantial increase in the SNR.

1.4.2 Collimation and spectral filtering

IACT telescopes generally employ very large light collection areas with focal ratios

typically less than 1.5 (referred to as “fast” optics), resulting in a large angular divergence

of the light cone arriving at the focal plane. For the VERITAS telescopes, the divergence

is ∼ 26◦ for light that arrives from the mirror edge relative to the center. This angular

divergence makes it challenging to spectrally filter the light to nanometer scale widths

optical bandpasses using narrow-band Fabry-Perot interferometric filters. These filters are

designed to work for collimated light with normal incidence. For light that arrives at an

angle θ, the spectral throughput of the filter is affected, and to first order, the transmitted

wavelength at incident angle θ follows

λ(θ) = λ0

√√√√1− sin2(θ)

n2
e f f

, (1.57)

where λ0 is the nominal center-band wavelength of the filter for normally incident light,

and ne f f is the effective coating refractive index. The above equation demonstrates that

the degradation of the bandpass can be minimized by choosing filters with higher ne f f

and lower λ0, for a fixed bandpass ∆λ.

To better quantify the optical bandpass for uncollimated light, we simulate the trans-

mission of a interferometric filter to light reaching it from a circular aperture. For an input

spectrum η(λ) through a filter with a transmission factor F(λ, r), the transmission is
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T(λ) = 2π
∫ rt

0
n(λ) ∗ F(λ, r)rdr. (1.58)

Here, we approximate the filter response to be unity when |λ− λ(r)| < ∆λ/2, where ∆λ is

the bandpass and λ(r) is adapted from Equation 1.57 with tan θ = r/ f . Figure 1.8 shows

a simulation of the transmission of uncollimated light from a VERITAS telescope passing

through an interferometric filter. The properties of the filter are matched to that currently

used in the VERITAS SII system. For light that arrives from an annulus of the mirror at low

θ (e.g., from 0◦ to 7.1◦), the transmission of the filter is mostly unaffected. At large θ, the

shift in transmitted wavelengths becomes significant, and the transmitted light from outer

annuli do not overlap in wavelength with those from the center. The overall throughput

of the filter is then skewed when integrating over the entire mirror area, degrading the

achievable SNR.

1.4.3 PSF

In Section 1.3.2, we have seen how night sky background (NSB) light reduces the value

of the measured spatial coherence by a factor of (1 + β)2, where β is the ratio between the

background to starlight flux for identical optical systems. The signal to noise ratio is re-

duced by a factor of (1+ β) (Hanbury Brown and Twiss, 1958b). A region of the sky is inte-

grated within the PSF, and the NSB flux can approach and even exceed that of the starlight.

The exact brightness of the NSB is dependent on many factors, for example, the Moon

phase, angular separation to the moon, sky-position relative to the galactic plane, and

local light pollution. Generally, the NSB flux ranges from mV = 18 to 21.5 mags/arcsec2

accounting for the variation from full to new moon (Krisciunas and Schaefer, 1991). A PSF

diameter of θps f will then integrate over a solid angle of Aθ = πθ2
ps f /4. For a magnitude

m, the equivalent spectral density can be approximated as η = η0 (2.512)m, where η0 is

defined as the photon spectral density for a zero-magnitude star in a given spectral band.

For the visual (V) photometric band, this corresponds to η0 ∼ 1 × 10−4 ph m−2 Hz−1

(Bessell, 1979). The total spectral density resulting from the NSB is ηnsb = η0(2.512)mnsb Aθ .

Figure 1.9 shows the value of 1 + β, or equivalently the reduction in the signal to noise

ratio relative to if there was no NSB flux. The calculation is carried out for three different

PSF sizes, corresponding to angular PSF diameters of 0.1◦, 0.01◦, and 1.5”, ranging from

sizes typical of IACT telescopes to those of seeing-limited observations. The solid lines
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are for bright moon conditions where the background light is 18.5 mags/arcsec2, and the

dashed lines indicate dark conditions where the background flux is 21.5 mags/arcsec2.

For a seeing-limited telescope, the NSB flux will not affect the SNR for stars brighter than

m ∼ 12. However, for an IACT telescope, the SNR is drastically reduced under bright

moon conditions for visual magnitudes dimmer than ∼ 6.

Figure 1.1: Simulations of the electric field and averaged intensity of quasi-monochromatic
light of central wavelength 500 nm and bandpass of 10 nm. The blue line shows the
electric field, where the dotted black line shows the averaged light intensity. The finite
optical bandwidth of the light gives rise to a time-varying amplitude over timescales of
the coherence time, which here is ∼ 0.08 ps.
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Figure 1.2: Schematic of two point sources illuminating two separated detectors.

Figure 1.3: Plots of simulated intensities (left) and the intensity cross-correlation (right)
for two detectors exposed to a partially-coherent binary composed of two point sources
of separation a. The colors indicate the different separations of the detectors and are
increasing from the top. As the detector separation is initially increased, the respective
intensities at each detector begin to decorrelate and reach a minimum at d = 0.5 λ/a at
which point they are completely uncorrelated. As the separation is increased beyond this
value, the intensities again start to correlate and are completely correlated at a separation
of d = λ/a, attributed to the binary property of the source.



26

Figure 1.4: Dependence of squared degree of coherence on baseline for several uniform-
disk stars of varying angular diameters for an observational wavelength of λ = 500 nm.
An interferometer that is able to measure the squared degree of coherence over many
baselines can then be used to constrain the angular diameter of the star.
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Figure 1.5: Basic schematic of an intensity interferometer. Starlight is collected at two
telescopes with a projected separation B and optical path delay τ. The intensity I(t) is
recorded at both telescopes by the use of a photodetector, and after compensation for the
optical path delay using an intrinsic delay τinstr = τ the equal-time correlation can be
performed to measure the spatial degree of coherence.
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Figure 1.6: Schematic of spherical mirror used to illustrate the time dispersion introduced
for some IACT optical designs. Photons that arrive at a radial distance away from the
center will have a different path length to the telescope focus which is indicated by the
black dot.

Figure 1.7: Histogram of time differences for N = 105 independent correlated pairs of
photons arriving onto a mirror described by the geometry in Figure 1.6.
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Figure 1.8: Simulation of the filter transmission for uncollimated light from a f/1.0 optical
system through a interferometric filter with λ0 = 420 nm, ∆λ =7 nm, and ne f f = 2.38.
(matching the SEMROCK 420/5 filter vendor specifications which is currently used in the
VERITAS observations). The black line shows the overall transmission when averaged
over the entire mirror area, where each colored line shows the transmission due to different
annuli of the mirror in units of the subtended angle.
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Figure 1.9: Simulation of the effect of a finite angular PSF for bright and dark night sky
background conditions represented by the solid and dashed lines, respectively.



CHAPTER 2

SCIENCE APPLICATIONS FOR A MODERN SII

OBSERVATORY

2.1 Signal to noise considerations
To first-order, the signal to noise ratio (SNR) for |γ|2 in the case of a two-telescope

interferometer for unpolarized light is given by (Hanbury Brown, 1974)

SNR = Aαn|γ|2
√

∆ f T/2, (2.1)

where A is light collection area, α is the instrumental throughput, n is the photon spectral

density, |γ|2 is the squared spatial degree of cohrence, ∆ f is the electronic bandwidth, and

T is the total integration time. An empirical form of the expected SNR for the NSII in the

case of an unresolved source (|γ|2 = 1) was shown by Hanbury Brown (1974) as roughly,1

SNR = 0.4T1/210−0.4B (2.2)

where B is the blue band magnitude for the star. From this, the corresponding time needed

to obtain a SNR = 20 (5 % in the squared visibility) is ∼ 69 hours for B = 2.5. The NSII was

ultimately limited for stars brighter than this magnitude. To obtain the same SNR for

B = 3.5 would have required ∼ 431 hours of observations illustrating why dimmer stars

were not pursued with the NSII.

Consider now an idealistic expectation of what can be achieved with a current inter-

ferometer using VERITAS as an example. The VERITAS mirrors correspond to an area of

A ∼ 113 m2 neglecting any shadowing from the camera. Modern photomultiplier tube

detectors can achieve quantum efficiencies of∼ 35 %, and assuming an optical throughput

of 50 % the overall efficiency is α ∼ 0.18. For an electronic bandwidth ∆ f ∼ 250 MHz,

1The expression found in Hanbury Brown’s book (Section 11.12) derives an expression that is SNR =
0.53 T1/210−0.4B based on experimental parameters. Data from observations of stars found the actual scaling
to be roughly three-quarters of this, and thus resulting in the scaling of 0.4 shown in Equation 2.2.
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limited by the optical time dispersion described in Section 1.4.1, the expected scaling is

now

SNR = 21.4T1/210−0.4B (2.3)

where the photon spectral density for a zeroth magnitude star in the B band is assumed

to be 0.95 × 10−4 ph m−2 s−1 Hz−1 as done by Hanbury Brown. This corresponds to an

improvement of the signal to noise by a factor of approximately 53 over the NSII. Under

the same criterion for the limiting magnitude (T= 70 hours, SNR = 20), the corresponding

limiting magnitude is then B < 6.8. However, the value obtained here does not take

into account many parameters that would degrade the sensitivity. These include NSB

light, excess noise in the photomultiplier tubes, influence of spurious correlations, and

attenuation of light in the atmosphere. Beyond measuring dimmer targets, the squared

visibility for bright targets can be measured with a high degree of precision. For example,

with the scaling in Equation 2.3, the squared visibility of a partially resolved star |γ|2 = 0.5

of magnitude B = 2.0 for a one hour integration time can be measured with a SNR of∼ 204

corresponding to an uncertainty of ∼ 1% in |γ|2.

While the sensitivity of a modern instrument clearly exceeds that of the NSII, it is

important to also compare to the current capabilities of modern observatories that uti-

lize direct interferometery. Some example limiting magnitudes are m < 6 − 7 for the

NPOI/CLASSIC instrument (Armstrong et al., 2013), m < 7 for CHARA/PAVO (Ireland

et al., 2008), m < 6.5 for CHARA/VEGA (Mourard et al., 2012), m < 8 for CHARA/MIRC-

X (Anugu et al., 2020), and m < 6 for CHARA/CLIMB (Ten Brummelaar et al., 2013). The

expected theoretical limiting magnitude of an SII observatory is thus comparable to that of

current direct interferometers, particularly in the visible band, and therefore can provide

independent high-angular resolution measurements.

Beyond the limiting magnitude, there are several arguments towards a modern inten-

sity interferometer. These generally stem from the robustness of SII against path length

fluctuations. The fastest detectors commercially available have temporal resolutions on the

order of tens of picoseconds corresponding to a light travel distance of order a few centime-

ters. In the case of photomultiplier tubes typically used on IACTs, the resolution is of order

1 ns, corresponding to a light travel distance of 30 cm. Atmospheric fluctuations occur over

a smaller length scale than these light travel distances and thus SII is insensitive to them.
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This provides the capability to operate at large baselines and at all optical wavelengths.

Direct interferometers require a mechanical precision at a fraction of a wavelength, and

this makes it challenging to operate at short optical wavelengths. Furthermore, since only

digital electronic connections are needed to perform intensity correlations, it is relatively

straightforward to scale an SII system onto tens, if not hundreds, of telescopes to provide

hundreds to thousands of simultaneous baselines. This provides extremely dense coverage

of the (u,v)-plane required for studying noncircularly symmetric sources such as binaries

or rapid rotators. The baselines can be made arbitrarily large, up to distances where

the coherence signal is too weak to measure. These factors therefore allow for a unique

complement to existing observatories to assist and advance ongoing scientific programs.

2.2 Angular diameters
One of the most fundamental measurements in optical interferometry is of the angular

diameter of stars. Since distances to a large population of Galactic stars are now available,

thanks to extensive surveys such as Gaia (Gaia Collaboration et al., 2018), measurement

of the angular diameters lead to the physical or “linear” diameters. Direct angular di-

ameter measurements can be used to obtain the effective temperature of the star via the

Stefan-Boltzmann law, provided that the bolometric flux can be measured independently

(Hanbury Brown et al., 1974b). Effective temperatures estimated from angular diameter

measurements can then be tested against stellar models obtained through spectroscopic

data. These comparisons allow for calibration of large-scale spectroscopic surveys and

tests of atmospheric stellar models (Mann et al., 2015; Casagrande et al., 2014). To interest-

ingly constrain stellar models a measurement precision of better than ∼ 3% in the angular

stellar diameter is required (Torres et al., 2010).

Figure 2.1 shows the limb-darkened angular diameter of stars as a function of the

visual magnitude for a variety of spectral types obtained from the JSDC spectral catalog

(Bourges et al., 2017), which estimates of stellar angular diameters from indirect spec-

troscopic measurements and, to a lesser degree, direct measurements. The distribution

of angular stellar diameters illustrates the requirements for studying stars of different

spectra types. For cooler, less massive, stars (e.g., K and M types), a large number can be

resolved if a limiting magnitude of V∼ 10 can be achieved with relatively modest baseline
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requirements of ∼ 100 m. However, hotter and more massive stars (e.g., B and A types)

require much higher angular resolution capabilities to begin resolving even the brightest

of these stars. Current direct interferometers have provided angular diameter surveys for

a very large range of spectral types (see van Belle et al. (2019) for a review). Interestingly,

it is only fairly recently that these observatories performed measurements of the angular

diameter of hotter spectral type (i.e., O or B types) stars with a precision matching what

was achieved with the NSII. Notably, these recent angular diameter measurements include

surveys of 12 early-type stars (Maestro et al., 2013), 6 O-type stars (Gordon et al., 2018), and

25 B-type stars (Gordon et al., 2019) with an average uncertainty in the measured angular

diameters of 2.3%, 7.6%2, and 6%, respectively.

2.3 Emission line and rapidly rotating stars
Emission line stars are generally identified by Balmer emission (e.g., Hα, Hβ) in their

spectra indicating the presence of dense circumstellar material, in the form of a shell

and/or disk, that is excited by the stellar radiation. On a larger scale, these stars are

a significant source of UV photons driving the formation of HII regions and affecting

evolution of the local interstellar medium. They include the subgroups such as ‘Be’ and

Wolf-Rayet stellar types. These stars often display dynamic behaviour and show intensity

variations occurring on timescales from minutes to years and radiate over radio to X-ray

wavelengths making them interesting observational targets for many astronomers. The

mechanisms that drive these systems are not fully understood. Although a significant

percentage (∼ 20%) of B-type stars display Be behaviour, the link between them is still

debated. In some cases, the circumstellar environments are formed from the stellar mass

outflows (‘classical’ Be Stars), or those that are generated from the accretion of surrounding

material (Herbig Ae/Be types). In classical Be stars, the mass outflows are linked to a

combination of rapid rotation and intense stellar radiation; however, the rotation rate

required for the mass transfer, and exact angular-momentum/mass input interactions with

the disk remain unclear (Granada et al., 2013).

High angular resolution observations at the mas and submas level have advanced our

2Since the angular diameters precision was not stated explicitly in the paper, this was calculated from the
tabulated results.
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understanding of these objects. Interferometric observations within Hα and Brγ lines

probe the spatial distribution of the circumstellar material. Current direct interferome-

ters have recently been used to examine the kinematics of the disk surrounding these

stars (Kraus et al., 2012) and to identify nonaxially symmetric spiral density structures

present in the disks through multiepoch observations in the blue and red shifted parts of

emission line features (so-called V/R variability) (Schaefer et al., 2010). The inclination

angle of the disks can be independently obtained by the structure of the observed dis-

tribution, and it has been used to calibrate models of Hα line profiles that estimate the

inclination from spectroscopic methods (Sigut et al., 2020).

Given the rich history of observations of Be stars in optical interferometry, it is impor-

tant to identify how SII observations can improve or aid in current observations. A study

has shown the capabilities of a CTA-like observatory to perform imaging of the surfaces of

rapidly rotating stars, indicating the realistic potential to constrain stellar oblateness and

temperature gradients along the stellar surface (Nuñez and Domiciano de Souza, 2015).

Observations at short wavelengths provide a unique insight in the probing the stellar

surface, since the emission in the disk is presumably weak at these wavelengths.
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Figure 2.1: Relationship of stellar angular diameters with magnitude for various stellar
spectral types. Sources were obtained from the JSDC stellar diameter catalog cross-
matched with the SIMBAD database.



CHAPTER 3

COHERENCE MEASUREMENTS OF A

PSUEDO-THERMAL SOURCE

Before attempting SII observations on stellar sources with modern observatories, it is

extremely helpful, if not necessary, to characterize the sensitivity levels of the instruments

in the laboratory by performing similar tests. Measuring the spatial coherence of thermal

light is made very difficult as the coherence time is typically several orders of magnitude

shorter than the detector resolution time. Even in the laboratory thermal HBT measure-

ments can be difficult to achieve; however, it is straightforward to generate a pseudo-

thermal light source that exhibits coherence times much longer, on the order of ms, that

allows for much shorter integration times for high SNR measurements. Pseudo-thermal

sources allow one to properly characterize the laboratory setup, including parameters

such as the source geometry, and also assess sources of systematic noise. The following

chapter documents experiments that were conducted in order to demonstrate the working

principles of an SII observatory.

3.1 Experimental setup
The laboratory was setup as shown in Figure 3.1. Psuedo-thermal light was generated

by shining a HeNe laser (543 nm) onto a rotating piece of ground glass. The scattered light

from the glass was then masked by either a single or double pinhole of various dimensions.

After propagating down an enclosed box of approximately 3 meters, the light was divided

by a 50/50 beam splitter and subsequently detected by single photon avalanche diode

(SPAD) detectors (MPC-PDM Series, 100 µm active area). The output SPAD signal was

then passed to an analog-to-digital converter (NI 5781) that passed the ADC values to

an FPGA based (NI PXIe-7965R) threshold discriminator written in LabVIEW. The FPGA

allowed for integrating the detector counts over a controllable time window and streamed

the photon counts to disk. The correlation of the two signals is performed via software to
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retrieve the correlation over a range of time-lags as to resolve the temporal coherence of

the light source.

3.2 Photon counter and correlator
When a photon is detected, the SPAD detector outputs a TTL pulse of width 20 ns with

rise/fall times of about 2 ns. The ADC converter digitized the output SPAD signal at a rate

of 100 MHz, or every 10 ns, to ensure detection of every photo-electron. A discriminator

using an FPGA was developed to register the detection of a photon, and double counting

was accounted for when the digitized voltage was greater than the discriminator level

for two serial samples. The SPAD detector has a characteristic dead-time of 75 ns corre-

sponding to a maximum count rate of about 13 MHz above which the detector response is

saturated. Neutral density filters were placed in the laser path to reduce the photon flux

such that the count rate for each detector was less than 1 MHz. For a photon detection rate

of 1 MHz that follows a Poisson distribution, the probability that 2 or more photons arrive

within an interval of width of the dead-time is less than 3 %. The number of photons every

microsecond was then recorded to disk for off-line processing.

The cross-correlation and auto-correlation for the detectors was performed via software

on the stored data. To implement this, the LabVIEW cross-correlation virtual instrument

from the Multi-core Analysis and Sparse Matrix toolkit was used, which calculated the

cross and auto-correlations over a range of time lags several times that of the coherence

time.

3.3 Visibility models for the laboratory sources
The sources used in the lab consist of either a single or double pinhole as to mimic

the observation of single or binary stellar sources. The single pinholes are modeled as a

uniform disk with a finite angular diameter, θP. The expected visibility then follows an

Airy disk profile,

V(u, v) = 2
J1(πθPBr(u, v))

πθPBr(u, v)
(3.1)

where J1 is the Bessel function of the first kind, and B is the radial separation between

detectors, B =
√

B2
x + B2

y, and as expressed in the commonly used uv coordinates, Bx =

uλ, By = vλ such that B = λ
√

u2 + v2.
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In the case of the binary, or double pinhole light source, the source intensity distribution

is modeled as two uniform disks with finite angular diameters with flux ratio f . It can

be shown (Berger and Segransan, 2007) that the visibility under these assumption can be

written as

|V(u, v)|2 =
V2

1 + f 2V2
2 + 2 f V1V2cos( 2π

λ B · p)
(1 + f )2 (3.2)

where V1 and V2 are the respective visibilities of each of the sources, which in this case fol-

low the form of Equation 3.1. The quantity B is the baseline vector and p is the separation

vector between the two pinhole centers. From the dot product it can be seen that when the

baseline vector is varied parallel to the separation vector, the modulation in the observed

visibility from the binary separation can be observed.

3.4 Measurements of the temporal and spatial coherence
Using the experimental setup described in the prior sections, a series of temporal and

spatial coherence were performed for a variety of pinhole configurations. Figure 3.2 shows

measurements of the auto- and cross-correlations for short and large baseline on a single

pinhole configuration. We see that the auto-correlation for a given channel is relatively un-

changed for a given baseline separation, but the cross-correlation is reduced significantly

for large baseline separations. The temporal variation can be explained by a time-varying

speckle pattern (Martienssen and Spiller, 1964). When the detector separations are well

within the size of a given speckle, given approximately by λ/θ, the intensities are highly

correlated, but as the the separation approaches and exceeds the speckle size, the relative

intensity fluctuations become uncorrelated.

The spatial coherence was then measured by measuring correlations over a range of

detector separations. One of the detectors was mounted onto a linear actuator to allow

control the separation of the detectors. The actuator movement was automated using a

LabVIEW script and integrated into the data acquisition code to allow for efficient mea-

surements over a large number of baselines. Two single pinholes of different sizes (vendor

specified diameter of 200 and 300 µm) were measured, and the results are shown in Figure

3.3. Each of the measurements were fit to a uniform disk model where the zero-baseline,

disk diameter, and normalization were left as free parameters. A clear difference between
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the measured coherence length of the single pinhole sources were seen, and both are

well-approximated by uniform disk sources.

Additionally, three different binary system configurations were also tested, where the

results are shown in Figure 3.4. The orientation of the binary was set such that the separa-

tion vector of the pinholes was parallel to that of the detector separation. The differences

between each of the different configurations are most evident in the second and third lobes.

The data for each source were fit to a binary model described by Equation 3.2. The pinholes

were approximated as uniform-disks to determine V1 and V2, and the angular diameters,

angular separation, and flux ratio were left as free parameters. The results of the fits are

shown in Table 3.1. The results of the fits show the qualitative expectation of increas-

ing diameters from the 200/200, 200/300, and 300/300 configurations. The fit diameters

generally underestimate the vendor-specified values. This is attributed to two factors.

First, the distribution of light onto the pinholes is not uniform, as clearly indicated by

the unequal flux ratio values. Furthermore, the distribution will follow the spatial profile

of the laser beam, and thus each pinhole deviates from a uniform-disk approximation.

Additionally, the pinholes were examined under an electron scanning microscope, and the

resulting images showed contamination at the edges of the pinhole further distorting the

light intensity across the pinhole. The physical separations of the pinholes also systemati-

cally under approximate the vendor-specified separations by a constant factor and is also

is attributed to the spatial distribution of the light on the pinholes. When factoring in the

under estimated diameters, the separations are consistent with the expected separations.

However, the overall results are satisfactory, which clearly indicate the binary nature of

the pinholes. The fit diameters and separations correlate closely with the expected values.

Table 3.1: Fit results corresponding to the model lines shown in Figure 3.4

θ1 (µm) θ2 (µm) p (µm) f
200/200 155 ± 4 148 ± 10 445 ± 2 0.27 ± 0.01
200/300 171 ± 5 240 ± 10 461 ± 2 0.61 ± 0.03
300/300 262 ± 10 283 ± 22 498 ± 4 0.53 ± 0.03
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Figure 3.1: Basic schematic of Schematic of laboratory setup for correlation measurements
of psuedo-thermal light. In this setup, HeNe laser light is scattered by a piece of rotating
ground glass (RGG). The light moves through a neutral density filter (NDF), and spatial
mask (P) to generate the articial source. A standard beamsplitter (BS) divides the light into
two beams, and each beam is measured by two separated detectors (D1/D2). One of the
detectors is mounted onto a linear actuator (ACT) to vary the detector separation. The de-
tector signals are passed to a digitizer (ADC) unit and a FPGA programmed discriminator
(DISCRIM) allows for photon-counting over variable time windows. The signal is stored
to a hard disk (DISK), and then the correlations between the strems are processed off-line
using standard computer processors (CORR).
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Figure 3.2: The two columns represent measurements performed for small (left) and large
(right) baseline separation distances, where the coherence from the source is, respectively,
maximal and negligible. The top two rows represent the auto-correlation for each channel
and the bottom row is the cross-correlation between different detectors.
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Figure 3.3: Measurements of single pinhole psuedo thermal sources in the laboratory. A
clear difference in the extent of the correlation length is observed for sources of different
sizes.
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normalized by the value of the squared visibility for the zero baseline position that is
provided by the fit.



CHAPTER 4

COHERENCE MEASUREMENTS OF A

THERMAL SOURCE

In the laboratory, we present new techniques for measuring the spatial coherence of a

laboratory thermal source using high-speed photo-detectors and digital electronics. The

modular nature of the detector and data acquisition system allows for straightforward in-

tegration with existing observatories. Parallel polarizations clearly demonstrate a photon

bunching in time and space, whereas orthogonal polarizations eliminates coherence but

reveals any additional correlation due to noise contamination. We show that correlation

measurements in the orthogonal configuration, or when the detectors are separated at

distances greater than the spatial coherence length of the source, can be used to correct

for systematic noise due to spurious electronic correlations.

4.1 Experimental setup
A diagram of our laboratory system is shown in Figure 4.1. Light from a mercury arc-

lamp is collimated, passed through a 10 nm narrow-band filter centered on the 435.8 nm G

spectral line of the Hg arc-lamp, and then refocused onto a spatial mask. The mask is either

a single or double pinhole of various size configurations (typ. 200 - 300 micron diameter)

simulating single and binary star systems. The output light passes through a long box

(3 m) and is split into two secondary beams via a 50/50 non polarizing beam splitter.

The light from each beam is then detected by super bi-alkali (> 35% Q.E.) high-speed

photo-multiplier tubes (PMT). The PMTs used in the laboratory are the same as those

currently employed on the cameras of an IACT observatory, VERITAS (Otte, 2011). The

light collecting areas of the detectors are limited by a circular aperture of 5 mm diameter.

It is noted that the PMT aperture is of comparable size to the spatial coherence length of

the source. This is done to increase the amount of light throughput into the detector such

that the necessary integration time needed to reach a desired sensitivity level is reduced.
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The effects of large detector areas have already been described in other work (Rou et al.,

2013) and are taken into account here. The PMTs are also enclosed in a brass tube to

shield them from unwanted electro-magnetic radiation. Linear optical polarizers may be

placed in front of each PMT and can be individually rotated to select parallel or orthogonal

polarization between the detectors.

In order to sample different regions of the spatial coherence curve, one of the PMTs

is mounted on a RoboCylinder linear actuator, whose position is controlled via LabVIEW

software to high accuracy. The positioning is integrated into our data acquisition system

allowing for automated measurements at varying positions. The output cables from the

PMTs are fed into a low noise high-speed (> 200 MHz) FEMTO trans-impedance pream-

plifier. The resulting signal is sent through 10 ft of double shielded cable (RG-223) and then

continuously digitized by an analog-to-digital converter (ADC) at a rate of 250 MS/s using

an AC-coupled National Instruments (NI) FlexRIO adapter module (NI-5761).

We have successfully employed two different types of digital correlators, off-line and

real-time. In the off-line correlator, the digitized data from each channel are scaled, trun-

cated to 8-bits, and merged into a single continuous data stream by a Virtex-5 FPGA

(PXIe7965R). The data stream is then recorded to a high speed (700 MB/s) 12TB RAID

disk. A software routine using LabVIEW can later be used to retrieve intensity correlations

between channels as a function of the digital time lag, typically up to ± 1 µs in steps of

4 ns. Due to the large number of samples, the data are read in blocks of 512 samples.

The convolution theorem gives the correlation between two signals as the inverse Fourier

transform of the product of the Fourier transforms of the signals. This is implemented

by use of the NI Multi-core Analysis and Sparse Matrix toolkit (MASM) cross-correlation

virtual instrument (VI), which optimizes the computation by utilizing separate computing

cores.

The largest drawback of performing the correlation off-line is the computation time

needed to analyze the data. Data are read into a buffer using a single computing core

and then correlated using the remaining cores. Depending on the number of samples in

each data block, it takes on the order of an hour of computation time for every minute

of data recorded. This is mainly due to the time required to perform the correlation via

the Fourier method for each data block in the NI cross-correlation VI. Since the correlation
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can be easily parallelized, this could be remedied by using a super-computer with many

(>1000) processing cores. The NI controller used has only 4 cores, limiting the maximum

number of correlations performed at the same time.

Some of the results presented herein were obtained by use of a real-time correlator

using the Virtex-5 FPGA. In this implementation, the cross-correlation is computed using a

multiply-accumulate algorithm with delay nodes to retrieve the correlation at various time

lags with the FPGA clock set at 125 MHz. The standard deviation of the entire correlogram

excluding the zero time-delay bin is recorded, and the time-stream of both channels are

displayed on the LabVIEW front panel interface to allow visual inspection of the data.

The FPGA clock for the algorithm is limited to 125 MHz. This timing restriction reduces

the signal to noise ratio (SNR) by a factor of
√

2 in comparison to the off-line correlation.

However, the correlations are retrieved in real-time, allowing for immediate inspection of

results and iterative tests of the laboratory setup. In the future, a compromise between the

off-line and FPGA methods can be achieved by first streaming the data to disk and then

using the FPGA to perform the correlations on stored data.

4.2 Observables and data reduction
4.2.1 Review of II measurements

The correlation between AC-coupled amplified voltage signals, J1(t) and J2(t), from

separated photo-detectors is

c(τ) =
1
T0

∫ T0

0
J1(t− τ)J2(t)dt (4.1)

where T0 is the total integration time of the correlator, and τ is the time delay between

channels. Hanbury-Brown and Twiss showed (Hanbury Brown and Twiss, 1958b) that

the correlation c(0) for a linearly polarized partially-coherent source of finite angular size

could be written as

c(0) = 2e2A1A2

∫ ∞

0
|Γ(ν, d)|2 α2(ν) n2(ν)dν

∫ ∞

0
|F( f )|2d f (4.2)

where A1 and A2 are the light collection areas for each detector, α is the quantum efficiency,

assumed to be the same for both channels, and n is the spectral density of the source in

units of photons sec−1 Hz−1 m−2. Γ is the coherence factor expected from the source and is
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dependent on the detector separation d. The term F( f ) represents the frequency response

of the detectors and amplifiers. The optical bandwidth of the light, ∆ν as set by filters in the

optical system, is generally narrow enough that the quantum efficiency, spectral density,

and coherence can be assumed as constant over the optical bandwidth. Additionally,

for a rectangular bandpass the integral over the frequency response can be re-written as∫ ∞
0 |F( f )|2d f = |Fmax|2 ∆ f , where |Fmax| is the effective gain in a single channel (assuming

identical channels), and ∆ f is the electronic bandwidth of the correlator assuming that

the gain is approximately constant over the electronic bandwidth. The correlation then

becomes

c̄(0) = 2e2A1A2α2n2|Fmax|2∆ν∆ f |Γ(d)|2. (4.3)

The ability to detect the coherence of the source is limited due to shot noise fluctuations

in each channel. Hanbury-Brown and Twiss showed that for identical channels the root

mean square fluctuations in the correlator output due to shot noise is

σ =
√

2e2αn∆ν(A1A2)
1
2 |Fmax|2(

∆ f
T0

)
1
2 . (4.4)

To find the signal to noise ratio (SNR) we divide Equation 4.3 by Equation 4.4 retrieving

SNR =
√

2(A1A2)
1
2 α n |Γ(d)|2

√
∆ f T0. (4.5)

The above equation represents an idealistic form of the SNR. In this derivation, we

assume point-like detectors that exhibit no dark current or after-pulsing. Furthermore,

the above SNR does not include the contribution from stray light entering the detector,

losses in the correlator, or pickup of additional noise in the data acquisition system. More

complete treatments that include many of these additional considerations have already

been performed (Hanbury Brown and Twiss, 1957, 1958b; Rou et al., 2013).

In our experiment, we digitize the voltage such that time is discretized, J(t) → J(ti),

making the observed ADC reading

K(ti) = [
2nb

Vr
J(ti)] (4.6)

where [ ] represents rounding the value to the nearest integer, Vr is the voltage range of the

digitizer, and nb is the number of resolution bits. The observed digital correlation is then,
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c(tk) =
1
T0

N

∑
i=0

K1(ti − tk)K2(ti)∆t (4.7)

where tk is the discrete digital time delay, and ∆t is the sampling time of the ADC.

4.2.2 Correlated noise reduction - ON/OFF analysis

When operating at the large bandwidths required by an intensity interferometry sys-

tem, there is often the undesired influence of spurious correlated noise degrading the spa-

tial coherence measurement for a given source. Noise sources are varied, from electronic

cross-talk between channels in the recording system, to Cherenkov light in the atmosphere

due to gamma-rays when observing stars. In the laboratory, a persistent noise source

is attributed to radio-frequency (RF) pickup. This RF signal is simultaneously detected

in both electronic channels producing correlated noise. Regardless of the source, if the

unwanted correlated noise is stable on operational timescales, it can then be measured

and removed. The exact behavior of each noise source on the correlated signal must be

examined in a case-by-case basis. In this section, a general way to identify and reduce

correlated noise by subtraction is presented. In our application, the temporal behavior of

the correlated signal, or correllogram, is monitored over small time-lag windows (< 1 µs),

throughout the integration process. In the laboratory total integration times are on the

order of 5 - 20 minutes but will be greater than one hour when observing stellar sources

with telescopes.

The measured correlation as a function of the time delay is

c(τ) = 〈K1(t)K2(t + τ)〉.

Typically, the sampling time of the digitizer is much longer than the coherence time of

the light. In this case, the correlation attributed to the spatial coherence of the source will

only appear for the zero time-lag bin, τ = 0. For time-lags not equal to zero, the correlation

should be distributed randomly according to shot noise from photo-detection.

Additional noise is then written as an additive term to the ADC reading recorded for

each channel at the digitizer input,

K(t) = S(t) + N(t)
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where S(t) is the signal attributed to the source, which includes both the wave and shot

noise components, and N(t) is the noise introduced into the system. In general, the

noise term, N(t), may result from a combination of several noise sources. The resulting

correlation is then
c(τ) =〈S1(t)S2(t + τ)〉+ 〈N1(t)N2(t + τ)〉

+ 〈S1(t)N2(t)〉+ 〈S2(t + τ)N1(t)〉
The goal is then to identify and remove all above terms except for the correlation

between S1 and S2. Now, it is necessary to consider at what stage in the measurement

process is the noise introduced into the detection. For purely electronic noise which occurs

after photo-detection, the cross-terms between the signal in one channel and noise in an-

other, known as the cross-talk, is ignored. In the laboratory, we observe that the cross-talk

between the channels is negligible compared to the signal and noise correlations. The

measured correlation can then be written as

c(τ) = 〈S1(t)S2(t + τ)〉+ 〈N1(t)N2(t + τ)〉

where only the noise not correlated to the signal itself was kept. The correlated noise

appears as a purely additive term to the overall correlation.

To remove the correlated noise, we perform a background measurement of the corre-

lation which does not contain the signal attributed to the spatial coherence, but includes

the noise contribution at the same level as in the desired correlation measurement. The

final measurement is obtained as the residual between the ON observation, where source

coherence is expected, and the OFF observation. A straightforward way to obtain OFF

data in the laboratory is to measure the correlation for detector separations large enough

for the contribution due to the coherence of the source to be negligible. This makes the

observed correlation

cF(τ, T, d) =〈S1(t)S2(don, t + τ)〉 − 〈S1(t + T)S2(do f f , t + T + τ)〉

+ 〈N1(t)N2(don, t + τ)〉 − 〈N1(t + T)N2(do f f , t + T + τ)〉

where T is the time difference between recordings of the ON and OFF runs, and don and

do f f are the detector separations in the ON and OFF configurations. Given a circular source

with angular diameter θd, the detector separation for the background correlation must be

greater than 1.22λ/θd so that the coherence from the source is very small. Ideally, the
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noise sources do not significantly change between ON and OFF runs such that the residual

between noise correlations tends to zero, leaving only the difference in signal correlations.

In order to alleviate for the slow changes in noise level between ON and OFF observations,

we tend to proceed with relatively rapid observation cycles of no more than a few minutes

period.

To ensure that the noise subtractions are properly performed, the R.M.S. distribution

over the entire correlogram excluding the zero time-lag is monitored against the expected

trend of 1√
T0

, where T0 is the total integration time. Initially, the shot noise component

will dominate the R.M.S, but as the integration of the correlator proceeds, low-level noise

correlations may be detected which sets a limit on the minimum detectable R.M.S. When

the noise correlation is significant, the R.M.S. trend will deviate from 1√
T0

. For proper

noise subtraction, the residual between the ON and OFF correlations should follow the
1√
T0

trend. Figure 4.2 shows a typical result in the laboratory for the R.M.S. trend. An

ON and then OFF run of 5 minutes were taken sequentially. The integrated correlation

for ON, OFF, and ON-OFF was recorded every second, and the R.M.S. was calculated for

each measurement over the entirety of the integration time. The bottom panel displays

the R.M.S. multiplied by the
√

T0 such that the expected value should fluctuate about a

constant. For both the ON and OFF runs, it begins to deviate from the expected trend after

only 50 seconds of integration (when the noise is detected). However, the residual between

the ON and OFF runs appears to be more stable, suggesting that the noise subtraction is

being performed properly. Here, the normalization for the R.M.S. trend for ON and OFF

runs is different, which we attribute to varying levels in the light intensity and also the

noise.

The measurements can also be performed using parallel (ON) and orthogonal polariza-

tion (OFF) configurations between the detectors. Light between orthogonal polarizations

should show no coherence and thus can be used as a background or OFF observation. This

method provides an additional benefit since both parallel and orthogonal configurations

can be observed simultaneously for a single detector separation.
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4.3 Results
4.3.1 Validation of ON/OFF analysis

The ON/OFF analysis was validated in the laboratory with the experimental setup

shown in Figure 4.1 using the off-line correlator and without the use of polarizing filters.

Figure 4.3 displays the correlogram both before and after obtaining the residual between

ON and OFF runs. The ON region was chosen at zero baseline separation, and the OFF at

a separation of 10 mm. Given the expected angular size of the source the first zero of the

coherence function is reached at approximately 5.5 mm. The subtraction of spurious noise

reveals the coherence of the source at the zero time-lag bin.

4.3.2 Spatial coherence measurement

To measure the spatial coherence a LabVIEW routine was developed which integrated

the actuator movement with the data acquisition. The source consisted of a circular pinhole

of approximately 300 micron diameter at a distance of 3.15 m with a central wavelength of

λ = 435 nm. Correlations were recorded at each position in 5 minute segments for both

an ON and subsequent OFF run. A total of 6 ON positions each separated by 1mm were

recorded about the zero baseline position. After each 5 minute integration, the mean of the

correlogram, excluding the value at the zero time-lag bin, was subtracted from the entire

correlogram. The residual between ON and OFF runs was then calculated. This process

was repeated 4 times, yielding a total integration time of 20 minutes at each position.

The result of this procedure is shown in Figure 4.4. The uncertainty in each measure-

ment was determined by the RMS scatter for time lags away from zero. The dashed line

represents a fit to the data by modeling the source as a uniform disk with fixed wavelength

and angular diameter. The zero baseline (or center position) and normalization are left

as free parameters and determined by the fit. The solid line includes the effects of the

extended detector size (Rou et al., 2013). To include these effects in the fit, an initial

model is generated by convolving the detector areas with the expected normalized spatial

coherence. The resulting model was interpolated and then fit to the data in a similar

manner as the initial fit without the detector size effects.

A reduced χ2 test was performed between the uniform disk model with detector size

effects and the measured spatial correlation finding χ2/ν = 0.83, suggesting agreement
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between the data and model. However, there are several considerations for the source that

are not taken into account here. Examination of the pinhole under a scanning electron

microscope revealed irregularities in the diameter on the order of 5-10 %. Additionally, the

angular brightness distribution may not be constant over the area of the pinhole, making

the uniform disk model assumption not fully valid.

4.3.3 Correlation between orthogonal and parallel polarized light

The experiment was setup using the polarizing filters in a parallel configuration in

front of each detector. Real-time FPGA correlations for minimal detector separation were

recorded for a period of 5 minutes. The filter was manually rotated by 90 degrees to select

the orthogonal configuration and the correlation measurement was repeated. The results

are shown in Figure 4.5, which shows the correlogram both before and after the applica-

tion of the ON/OFF subtraction. The noise subtraction between parallel and orthogonal

polarizations offered an improvement of 59% of the SNR over the parallel configuration

measurements.

4.4 Outlook
The second order coherence function for simulated stars using a thermal light source

were measured with a digital correlator. An ON/OFF analysis routine was developed

allowing for removal of systematic spurious correlations due to unwanted noise pickup.

The routine consisted of either physically separating the detectors so that the coherence

from the source is negligible or using orthogonal polarizations in order to measure a

background. The main application of this work is towards a modern SII array using IACT

arrays to observe stars. The system will be integrated into the StarBase-Utah observatory

over the Summer of 2017 for initial tests to verify operation on actual astronomical tele-

scopes.

Our group is actively working to improve some of the features presented in this paper.

At the time when these results were obtained, the maximum bandwidth of the FPGA

correlator was limited due to timing restrictions. However, a modified algorithm was

developed allowing for more optimal operation of the FPGA correlator. Additionally,

instead of performing the correlations in real-time, the data can be first streamed to disk,

where the correlations are performed after digitization. A benefit of streaming data to disk
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is that an arbitrary number of channels can be correlated with computation time as the only

limitation. This opens the possibility for correlations between selected polarization modes

as well as multiple spectral channels. The obtainable SNR is then improved by the square

root of the number of additional channels. Also, proper normalization of the correlation

between runs for varying light levels has yet to be demonstrated. The true normalization

depends on a number of factors, primarily the light intensity and gain variations. Within

small integration times in the laboratory, the light intensity and gain can be expected to

be constant; however, over hour-long time scales as needed for stellar observations, these

changing parameters need to be accounted for. The normalization of the correlation for

varying light intensity and gain fluctuations has already been studied by Hanbury-Brown

and Twiss (Hanbury Brown, 1974).

For the integration into IACT telescopes there are several tasks to be demonstrated.

First, to use the ON/OFF analysis it is necessary to measure the orthogonal and parallel

polarization of light simultaneously to remove the lasting effect of any transient noise

sources as well as reducing total data collection time. A straightforward implementation

of this is to use a polarized beam splitter to separate the orthogonal polarizations. Each

telescope will have its own data acquisition hardware with the data brought together to

a central processing unit after digitization. This requires synchronization of the ADC

modules to sub nanosecond precision, which already can be accomplished using fiber

optics and external clocks (Serrano et al., 2009). In the laboratory, we have already achieved

synchronization for closely spaced (< 1m) but physically separated data acquisition mod-

ules using a central timing unit and coaxial cable connections. However, this capability

still needs to be demonstrated over large (> 100m) distances.

We have successfully measured the coherence of a thermal blackbody source in both

time and space using a digital correlator. Small modifications to the current experimental

setup allow interferometric capabilities on large arrays of IACTs at very modest costs and

are currently being pursued.
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Figure 4.1: Schematic of the laboratory setup
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Figure 4.2: The top panel shows the standard deviation of the correllogram excluding
the zero time-lag bin as a function of the total integration time. In the bottom panel, the
same data are shown but multiplied by

√
T0. The horizontal black dashed line shows the

mean of the ON-OFF analysis. For both the ON and OFF runs, the presence of spurious
correlations causes the R.M.S. trend to deviate from the expected 1√

T0
. In the case of the

ON-OFF analysis, the R.M.S. tends to follow the expected trend.
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Figure 4.3: In the top panel sequential ON and OFF measurements of the correlogram over
an integration time of 30 seconds each are overlaid. For small time lags (τ < 500 ns), the
scatter between the measured correlation for different time lags increases significantly due
to the presence of correlated noise. In the bottom panel, the residual between a total of
10 minutes each of ON and OFF data (comprised of 30 second sequential runs alternating
between ON and OFF) is shown, which reveals the zero time-lag correlation emanating
from the spatial coherence of the source.
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Figure 4.4: The above image shows the measured correlation from the FPGA correlator as
a function of the detector separation. The dotted blue line is a fit to the data assuming a
uniform disk model for the light source. The wavelength and diameter of the source are
held constant but the normalization and center can vary. The black line is a similar fit but
includes the effects of the extended detector aperture.
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Figure 4.5: Correlogram for the polarization tests performed in the laboratory. The top
panel shows the result for both the parallel and orthogonal configuration, and the bottom
panel shows the residual along with ±1σ indicators.



CHAPTER 5

THE VERITAS STELLAR INTENSITY

INTERFEROMETER

Following the experimental developments made in the laboratory and with the Star-

Base-Utah observatory (Matthews et al., 2018a), an SII instrument was constructed for use

on the VERITAS telescopes. An initial iteration of the system was built during the Summer

2018, with on-sky tests beginning in Fall 2018. Observations of the two stars γ Orion and

κ Orion were performed during January 2019, successfully measuring coherent intensity

fluctuations with two of the telescopes. The system was then expanded to all four VER-

ITAS telescopes, successfully completed in May of 2019. Observations in December 2019

of the β CMa and ε Orion allowed for the determination of the angular stellar diameters

of both stars to a precision of 3-4% in agreement with prior results, thus establishing the

working operation of the complete SII system. This chapter presents the current state

of the VERITAS-Stellar Intensity Interferometer (VSII) and overviews the instrumentation

and observations of β CMa and ε Orion.

5.1 Instrument
5.1.1 Camera

The VSII camera hardware is mounted onto a removable aluminum plate that is mounted

in front of the VERITAS gamma-ray camera. A photograph of the camera with associated

hardware is shown in Figure 5.1. On the plate, a 45◦ mirror1 redirects the light from the

primary onto an optical diaphragm with a diameter corresponding to approximately 0.1◦

on the sky. The light then passes through an interferometric filter with a vendor-specified

center wavelength of 420 nm and bandpass of 5 nm.2 Since the light is not collimated

1https://firstsurfacemirror.com/uv-enhanced-first-surface-mirror/

2https://www.semrock.com/FilterDetails.aspx?id=FF01-420/5-25
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onto the filter the effective bandpass is broadened. Calculations established the resulting

bandpass to be centered on a wavelength of 416 nm with an effective width of ∆λ =

13 nm. This effect reduces the overall spectral density throughput, and correspondingly,

the signal-to-noise by approximately a factor of 2. A plot of the expected throughput

including the effects of large AOI light, as well as other instrumental and atmospheric

parameters are shown in Figure 5.2. The light is then detected by a Hamamatsu R10650

PMT (Otte, 2011). The gain of each PMT is controlled via battery-powered high voltage.

The exact high voltage delivered to each PMT is individually controlled by adjusting the

duty cycle of a pulse-width modulator that sets the high voltage level using an electrically

isolated optical fiber (Cardon et al., 2019). A LabVIEW based graphical user interface was

developed to remotely control the HV level delivered to each PMT. The output current

of each PMT is fed into a low-noise trans-impedance FEMTO HCA-200M-20K-C 200 MHz

pre-amplifier. The voltage output of the pre-amplifier drives a long triaxial cable that is

connected to the data acquisition system for continuous readout.

5.1.2 Data acquisition

A National Instruments (NI) NI-5761 250 MHz DC-coupled analog-to-digital (ADC)

converter continuously digitizes the amplified PMT signal at 250 MS/s with 14-bit reso-

lution per sample (pushed into a signed 16-bit integer) over a peak to peak voltage range

of 1.23 V. Digitized values are passed to a NI PXIe-7965R module, which hosts a Virtex 5

SX95T FPGA. The FPGA is programmed to downcast the sampled value to an 8-bit integer

and push the data through a first-in-first-out (FIFO) buffer which is then streamed to a

12TB NI-8265 RAID disk array at a data rate of 250 MB/s per telescope. Figure 5.3 shows

an example of the digitized waveforms recorded with all four telescopes.

5.1.3 Synchronization of data acquisition units

The ADC sample clock for each telescope is referenced and phase-locked to a common

external 10 MHz clock. To generate the reference clock, a centrally located White Rabbit

(WR) Switch is used to distribute a 10MHz clock through optical fiber connections to

WR-Len modules each located near the respective data acquisition systems. The WR-Len

module takes in the optical fiber signal and generates the synchronized electronic 10 MHz

signal to which the ADC sample clock is referenced.
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Tests in the laboratory were performed to establish the quality of the synchronization.

Using a high bandwidth pulse generator, a narrow periodic square pulse of width ∆t ∼
2 ns was split and distributed to two separated data acquisition systems. The correlation

was measured for each of the digitized signals. If the sampling of the separate systems

are properly synchronized the cross-correlation between them should match closely with

the measured auto-correlation of the signal. If, for example, there is a temporal drift in the

sampling of one of the acquisition units relative to another, the cross-correlation will show

a broader peak in time relative to the auto-correlation. The results of these tests are shown

in Figure 5.4. The correlation was measured in two different synchronization configura-

tions, one where the internal sampling clock was referenced to the external common 10

MHz clock (referenced), and another control test that did not reference the sample clock to

the external clock (free-running). We see that in the referenced case, the cross-correlation

closely matches that of the auto-correlation, demonstrating that the synchronization is

stable to within a fraction of our sampling time. There is a relative shift of the signal of

1 sample, attributed to variability of the data acquisition systems ability to start acquiring

data on the same clock cycle. For the free-running case, the correlation peak is much

broader due to the relative drift of the sampling clock of each system. These tests validate

the ability of the independent data acquisition systems to record synchronous data, and as

well the need for a common external clock to provide the synchronization.

5.1.4 Correlator

In R. Hanbury-Brown’s book on the development of intensity interferometry, he presents

a quote stating “The most challenging part of constructing an intensity interferometer

is the design of a satisfactory correlator.” While still challenging today, the widespread

availability of high speed digital electronics have significantly eased the complexity of

a suitable correlator for intensity interferometry. For the VERITAS Stellar Intensity In-

terferometer a field programmable gate array (FPGA) based correlator was developed to

perform the correlation between the data streams of the starlight intensity recorded at each

of the telescopes. FPGAs were used due to their efficiency in processing data at large rates.

In a single night of observation, a 6 hour data-set will generate a total of 5.4 TB of data at

each telescope. The total available space in each hard drive is ∼ 10 TB, and therefore the
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data need to be processed before the next night of observation in order to clear space on

the disks.

To perform the cross-correlation between the digitized starlight intensities I1(ti) and

I2(ti), a multiply-accumulate algorithm is utilized where the correlation cN(k) over N

samples is calculated as

cN(k) =
1
N

N−1

∑
i=0

I1(ti)I2(ti+k) (5.1)

where i is the FPGA clock cycle, and k is a digital time-lag inserted between the channels.

The speed of this correlation algorithm is dependent on the maximum allowable FPGA

clock cycle rate, and in our experience was limited to about 8 ns. Since the data are sampled

at a rate of 4 ns, each pair of correlations would take twice the amount of time to process

as it did to record, which would not be sufficient in order to clear hard drive space for

observations on a subsequent night. To improve the correlator speed, multiple sequential

samples can be processed in parallel. However, this requires that both the correlation at

k and at k + 1 be calculated in each clock cycle, thus demonstrating a trade between the

hardware resource usage in the FPGA and computational speed of the correlation. For two

sequential samples at ti and ti+1 the correlation then becomes

cN(k) =
1
N

N−2

∑
j=0

[I1(ti)I2(ti+k) + I1(ti+1)I2(ti+1+k)] (5.2)

cN(k + 1) =
1
N

N−2

∑
j=0

[I1(ti)I2(ti+k+1) + I1(ti+1)I2(ti+1+k+1)] (5.3)

where i = j/2, and j = 2n, with n being integer numbers. Since two samples are processed

at a time, the overall number of clock cycles needed to do all the correlations is halved over

the case when only one sample is processed per clock cycle, thus doubling the efficiency

of the correlator if the FPGA clock cycle rate can be maintained.

The above algorithm was successfully compiled on the FPGA with a clock speed of 80

MHz processing two sequential samples per clock cycle over a total of 64 delay channels

spanning time-delays from -128 to 124 ns in units of the sampling time of 4 ns. As a

result, the correlator can process data samples at a rate of 160 MS/s. Since the data are

recorded at rate of 250 MS/s, the computation time is longer than the observation time by

a factor of∼ 1.6. Given the four telescopes available, there are six independent correlations
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between all telescope pairs. By running the correlations on a single FPGA, where each pair

is processed sequentially, the total computation time would be almost 10 times that of the

observation time, and thus a nightly observation of 6 hours would require 60 hours of

processing. To alleviate this, a second FPGA was installed to parallelize the correlation,

doubling the rate of computation. A 6 hour observation is then halved to approximately

30 hours of computation for all telescopes. Since the total processing time still exceeded

the amount time between nightly observations, a spare drive was added on-site in order

to provide overflow space for any observing runs not processed. While not optimal, this

computational efficiency was sufficient for initial observations with all four telescopes in

order to validate the rest of the SII instrumentation.

Future upgrades to the correlator include extending the algorithm to processing more

than two samples per clock cycle, while maintaining the clock rate. By simply doubling the

computation rate, the computational efficiency would allow for a processing of 7 hours of

data in approximately 16 hours, sufficient for performing the correlation between all other

telescope pairs between nightly observations. Extra FPGA correlators can also be added to

further parallelize the correlation, up to the speed of the limiting bandwidth of either the

network or disk read speed.

5.2 Observations
5.2.1 Installing the SII camera

To enable SII observations, the plate and corresponding SII optical and detector hard-

ware are installed in front of the VERITAS gamma-ray camera as depicted in Figure 5.1.

The location (and therefore the alignment) of the SII detector can be adjusted with sliding

plates on which the PMT is mounted. The plates allow for the positioning of the PMT

both along the optical axis, as well over the X-Y position in the focal plane. To align

the PMT in the focal plane the location is matched to the center pixel of the VERITAS

gamma-ray camera. This is performed using a beamsplitter mounted within an inset of

the 45 degree mirror. The image of the SII-PMT can then be adjusted with the plates to

align with the center pixel that, in principle, is matched to the positioning of the VERITAS

tracking software.

The HV system is setup by connecting a fiber optic cable that provides control of the
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HV level to the HV supply mounted on the SII camera. The HV supply is then connected

to the PMT using a short coaxial cable. The HV supply is powered through a 15V battery

supply mounted internally in the VERITAS camera and connected through a coaxial cable.

The output of each PMT signal preamplifier is connected to a double-shielded coaxial

cable connected to the data acquisition system in each telescope trailer. The 45 degree

mirror is collapsible allowing the entire system to be fully enclosed within the VERITAS

camera shutter that is closed during daytime or in inclement weather. All hardware,

with the exception of deploying/collapsing the mirror, is untouched after the SII plate is

installed onto the VERITAS focal plane. At the end of the SII observing period, the cables

are disconnected, and the plates are removed to allow gamma-ray observations. The plates

are stored with dust covers over the mirrors and PMT in each VERITAS trailer.

5.2.2 Data Taking

A series of start-up procedures are performed to prepare observations:

• A trigger pulse is distributed to all telescopes and the recordings are checked to

ensure that each system start data acquisition simultaneously.

• A calibration run is performed to measure the DC level of the PMT signal with the

HV removed.

• After twilight, the HV to each PMT is tested to ensure that power to each of the

detectors is provided.

• The telescopes are then slewed to the target of interest. The HV for each PMT is

manually adjusted such that all detectors produce a DC photocurrent of ∼ 15 µA.

Once the start-up routine is completed, the data taking on stars can begin. A full observa-

tion of a given target star consists of a series of ON/OFF runs, where each run typically

corresponds to 30/1 minute exposures, respectively. The ON runs reflect when the star is

centered in the SII optics, whereas the OFF runs are taken on dark patches of sky within

a few degrees of the target. A CCD camera (the VERITAS pointing monitor) enables

monitoring of the star image in the focal plane. A snapshot of observations of a star slightly

off-center is shown in Figure 5.5. Any residual inaccuracies in centering the star image can

be corrected by adjusting the tracking software sky position.
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A LabVIEW-based interface was developed to help monitor the recording of the data.

The interface displays the recorded signal intensity over short time-buffers of ∼ 1 µs with

the full 4 ns time resolution. In addition, the currents are averaged over a 1 second duration

and displayed over longer timescales. The monitoring of the fast and slow signal intensity

helps ensure data quality, and also provides an indication of changes to the atmospheric

quality (e.g., thin clouds, aerosols, etc.).

5.3 Data analysis
The output of the correlator is a series of cross-correlations 〈Vx(t)Vy(t+ tk)〉i along with

the average value 〈Vx〉i and 〈Vy〉i at each telescope over a series of integration periods or

“accumulation frames” i = 0 . . . N, each corresponding to 1 second of data. The average

currents over the same time periods 〈Vx〉i and 〈Vy〉i are also measured allowing us to

calculate

g(2)i (tk) =
〈Vx(t)Vy(t + tk)〉i
〈Vx〉i〈Vy〉i

(5.4)

over a range of discrete time-lags tk performed over 64 time-lag channels spanning -128 to

124 ns in steps of 4 ns.

5.3.1 Correction for the optical path delay

As a star changes position in the sky, the geometrical optical path delay (OPD) between

a given pair of telescopes is continuously changing on a scale that is generally greater

than the time-resolution of the system. Since the desired coherence signal is observable at

zero OPD, it must be accounted for before averaging all of the frames obtained in a run

together. The OPD, τOPD, can be calculated from the target sky position given by the right

ascension and declination, current time and observatory latitude and longitude, as well

as the physical baseline separation betwen the telescopes measured in three dimensional

orthogonal coordinates (East-West, North-South, and Up-Down separations) (Ségransan,

2007). Using prior measurements of the relative telescope positions shown in Table 5.1,

the OPD is calculated for each frame. To correct for the OPD, each frame is shifted and

centered by the average number of samples to zero optical path delay by performing

g(2)i (τk) = g(2)i (tk − tsig) (5.5)
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where tsig = round(τOPD/∆t).

5.3.2 Noise cuts

A series of quality control cuts are applied to frames that are either corrupted by spu-

rious correlations or affected by a loss of photocurrent due to poor weather conditions.

The spurious correlations are largely attributed to a narrowband, episodic RF emission

that affects all VERITAS-SII telescopes at the same instance, but the source of which is

unknown. The Fourier transform of each correlation frame is performed, where Figure

5.6 shows the power spectral density of all correlograms each averaged over one second

integration for a run of 30 minutes. The signal attributed to the known noise frequency can

be seen by the peak at ∼ 80 MHz affecting many frames. To quantify if a run is affected by

the noise, the following observable, herein referred to as the “noise ratio,” is calculated

NR =
P( fN)

〈P( f 6= fN)〉
(5.6)

for all frames where P( fN) is the noise power at the frequency in which the noise power

peaks (80 MHz), and 〈P( f 6= fN)〉 is the average of the power at all other frequencies.

Figure 5.7 shows the evolution of NR as a function of time during a typical obser-

vation. Frames where NR goes high (NR greater than ∼ 5) are corrupted by the spuri-

ous correlations, whereas in the converse case where NR goes low (NR approximately

equal to 1) are not affected. A clear ON/OFF bimodal behavior seen where the noise will

appear/disappear over timescales on the order of tens of seconds. The current analysis

deals with the noise affected correlations by removing any frames in which NR exceeds

a prespecified threshold. Typically, the threshold value of NR is ∼ 5 but is varied over a

range of values to ensure that there is no systematic effect to the value chosen.

After all correlogram frames are averaged together in a respective run, the Fourier

transform of the resulting correlation is performed. Figure 5.8 shows the power spectral

density distribution before and after noise cuts. If noise cuts are not applied, there is a

dominant peak near the 80 MHz noise frequency, which corrupts the averaged results. By

including the threshold cut to frames that exceed a given NR, the noise contribution is

removed, and the power spectral density is smooth with respect to frequency, indicating

that episodic RF emission has been removed. Typically, 30 - 40% of the data are removed
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during the cuts, decreasing the usable data set to 60-70 % of the actual observation time.

The achievable sensitivity is therefore degraded by∼ 15 - 25%. Ideally, the noise should be

treated in hardware rather than as a noise cut in software, and future work should focus

on identifying the source of the noise, and developing schemes to remove or shield it to

improve the observational duty cycle.

5.3.3 Correlator drift

After noise cuts are applied, each of the frames are zero-subtracted to remove the effects

of “correlator drift,” initially coined by HBT, that are non-Gaussian fluctuations of the zero-

level of the correlator. The measurements of g(2)(τ) − 1 should fluctuate about zero for

any time-lag where coherence is not expected. In practice, certain frames can significantly

differ due to possible low frequency spurious correlations. Since the correlator spans a

range of 250 ns, periodic spurious corrleations that occur over a much longer time-scale

will appear as shifts in the zero-level of the correlator. The zero-drift is removed from each

frame by calculating

∆g(2)i (τk) = g(2)i (τk)− 〈g(2)i (τk)〉|τk |≥στ
(5.7)

where 〈g(2)i (τk)〉|τk |≥τsig+στ
is the average over all time-lag values excluding any that are

within a time-window τk < στ where στ represents an uncertainty window including both

the width of expected g(2) correlation peak, and variability in the relative timing of the

system. Figure 5.9 shows the evolution of the zero-drift throughout a run.

5.3.4 Measurement of the spatial coherence

Once noise cuts, path delay and zero-drift corrections have been applied to all frames,

a weighted mean is performed to obtain a single correlation measurement for each obser-

vation run

∆g(2)(τ) =
∑i ∆g(2)i (τ)wi

∑i wi
(5.8)

where the weight wi is determined by the scatter in the un-normalized correlation over all

time lags divided by the product of the average signal intensities for a given time lag (i.e.,

in a given frame wi = 1/σ2
∆g(2)i

) with

σ∆g(2) =
σ〈VxVy〉i
〈Vx〉i〈Vy〉i

(5.9)
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where σ〈VxVy〉i is the standard deviation of the unormalized correlations. Weighting the

error by the fluctuations over many independent time-lags takes into account the shot

noise fluctuations as well as spurious correlations.

After the averaged ∆g(2)(τk) value has been calculated, the next step is to extract the

correlation attributed to the spatial coherence. The signal should show up as an excess in

the reduced ∆g(2)(τk) data within the time window |τk| < στ. The shape of the excess peak

is determined by the correlation of the optical time response of each system. The peak is

modeled as Gaussian of the form

f (τ) = Ae
− 1

2 (τ−τ0)
2/σ2

τg2 + C (5.10)

with A, τ0, and C left as fit parameters. A is the amplitude of the coherence peak and di-

rectly measures |g(1)(r)|2, τ0 is a parameter that accounts for a variable start time between

the separated data acquisition systems and is constrained within |τ| < 10 ns of zero-lag,

and C is another correction parameter that subtracts off any drift in the mean level of

the correlator. The value of the fit width is fixed to a value of σ2
τg2

= 4.0 ns determined

empirically from the data and consistent with expectations from simulations. The value

of the width was obtained by allowing it to be a free parameter in the fit of the integrated∣∣∣g(1)(τ)∣∣∣2 correlation measurements for runs showing a peak amplitude with a p value

less than 3 ×10−7. The value of the fit width was stable within fit uncertainties for several

runs demonstrating that no significant fluctuations in the relative timing of the acquisition

systems are present.

Table 5.1: Relative telescope positions separated into East-West, North-South, and Up-
Down directions

Tel. BEW (m) BNS (m) BUD (m)

T1 135.9 7.5 6.0
T2 45.1 -49.1 -0.95
T3 28.9 60.7 4.5
T4 -36.2 11.7 1.63
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Figure 5.1: Photograph of the SII camera mounted in front of the VERITAS gamma-ray
camera.
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Figure 5.2: Calculation of the estimated spectral throughput including atmospheric and
instrumental parameters.
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Figure 5.3: Waveforms from all four telescopes when exposed to a dark patch of the sky
during bright moonlight conditions.
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Figure 5.4: Results of laboratory tests on the synchronization of two separated DAQ
systems. The green curve shows the auto-correlation measured by one of the DAQ units of
a periodic square pulse with a very narrow pulse width. The cross-correlation between the
signals measured in the two DAQs are also performed when a common clock is referenced
(black) and when each DAQs refereneces an internal sample clock with external reference
(blue). Clearly, in the case of no external reference the synchronization is poor, as the
sampling between the systems drifts by amount much greater than the sampling time.
When the external clock is referenced, the shape of the correlation matches that of the
auto-correlation but offset by one sample due to variability in the start times of the systems.
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Figure 5.5: Image of the VERITAS telescope focal planes when tracking a stellar target.
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Figure 5.6: Power spectral density over all correlation frames for a single run where each
line is a different frame.
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Figure 5.7: Evolution of the noise ratio over a typical 30 minute observation.

Figure 5.8: Power spectral density of the averaged correlation performed over all correla-
tion frames before (blue) and post (orange) noise cuts.
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Figure 5.9: Evolution of the mean level of the correlator (zero-drift) over a run



CHAPTER 6

DEMONSTRATION OF STELLAR INTENSITY

INTERFEROMETRY WITH THE FOUR

VERITAS TELESCOPES

High angular resolution observations at optical wavelengths provide valuable insights

in stellar astrophysics (Monnier, 2003; Ridgway et al., 2019), directly measuring funda-

mental stellar parameters (Boyajian et al., 2013; Casagrande et al., 2014), and probing

stellar atmospheres, circumstellar disks (Kraus et al., 2012), elongation of rapidly rotating

stars (van Belle, 2012), and pulsations of Cepheid variable stars (Kervella et al., 2017).

The angular size of most stars are of order one milli-arcsecond or less, and to spatially

resolve stellar disks and features at this scale requires an optical interferometer using

an array of telescopes with baselines on the order of hundreds of meters. We report on

the successful implementation of a stellar intensity interferometry system developed for

the four VERITAS imaging atmospheric-Cherenkov telescopes. The system was used to

measure the angular diameter of the two submas stars β Canis Majoris and ε Orionis

with a precision better than 5%. The system utilizes an off-line approach where starlight

intensity fluctuations recorded at each telescope are correlated after observation. The

technique can be readily scaled onto tens to hundreds of telescopes, providing a capability

that has proven technically challenging to current generation optical amplitude interfer-

ometry observatories. This work demonstrates the feasibility of performing astrophysical

measurements with imaging atmospheric-Cherenkov telescope arrays as intensity interfer-

ometers and the promise for integrating an intensity interferometry system within future

observatories such as the Cherenkov Telescope Array.

High-angular resolution optical astronomy is often performed through optical am-

plitude interferometry (OAI), which measures the source spatial coherence function by

observing the fringe visibility of interference patterns produced when light collected at

separated telescopes is superimposed (Labeyrie et al., 2006). One other approach is stellar
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intensity interferometry (SII) that instead uses correlations of star-light intensity fluctua-

tions recorded with independent detectors on separated telescopes to measure the spatial

coherence (Hanbury Brown and Twiss, 1957). SII was developed in the late 1950s (Han-

bury Brown, 1974) and resulted in the Narrabri Stellar Intensity Interferometer (NSII) that

was used for observations from 1963 to 1974, providing the first definitive catalog of 32

stellar angular diameters (Hanbury Brown et al., 1974a). Observations with the NSII were

limited to only very bright stars with visual magnitudes less than 2.5. The sensitivity of

an SII telescope is linearly proportional to the telescope area and detector efficiency, and

inversely proportional to the square root of the time-resolution as shown in the Methods

section (see Equation 6.6). The capabilities of the NSII were restricted by these factors and

concurrent technical advancements in OAI provided substantial gains in the achievable

limiting magnitude using much smaller telescopes, forestalling further developments in

astronomical SII efforts.

SII has re-emerged as a viable technique for high-angular resolution astronomy pri-

marily due to the potential of outfitting current and future large diameter (> 10 m) tele-

scope arrays with SII capabilities (LeBohec and Holder, 2006; Pilyavsky et al., 2017b). A

suitable SII instrument requires recording the star-light intensity with nanosecond level

time-resolution and then correlating the intensities between telescope pairs. The optical

path length only needs control with a precision no better than a few centimeters, deter-

mined by the light travel distance over a duration equal to the detector time resolution.

The insensitivity to optical imperfections allows for SII instrumentation to be installed

onto imaging atmospheric-Cherenkov telescope (IACT) arrays constructed for gamma-ray

astronomy. With mirror diameters typically exceeding 10 m, IACTs are among the largest

astronomical light collectors. IACTs employ fast (f∼ 1.0) optics with segmented mirrors

to reduce cost, and so the large light collection area is achieved at the expense of imaging

resolution, but they remain capable for performing rapid optical photometry (Lacki, 2011)

and SII measurements of stars that are several magnitudes fainter than those accessible

to the NSII (Rou et al., 2013). There are several practical arguments for a modern SII

observatory that uniquely complement the current capabilities of OAI. The tolerance to

path length fluctuations allows for observations at all optical wavelengths, even in the U

and B photometric bands that are generally inaccessible to OAI observatories on account of
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the required mechanical precision at a fraction of a wavelength. Furthermore, the baselines

between telescopes can be made arbitrarily large in order to probe unprecedented angular

scales as small as tens of microarcseconds with kilometer length baselines. A significant

advantage of SII is that the technique can be scaled up to an arbitrary number of telescopes

since only digital electronic connections are required (Dravins et al., 2015), enabling an

optical intensity interferometry observatory that operates in a comparable way to radio

interferometry. These realizations have led to several recent experimental efforts towards

a modern intensity interferometer (Zampieri et al., 2016; Tan et al., 2016; Weiss et al., 2018;

Zmija et al., 2020), successful SII observations of coherent intensity fluctuations using

two telescopes (Guerin et al., 2018; Acciari et al., 2020), and distance calibration to the

luminous blue variable P Cyg (Rivet et al., 2020). We improve upon these observations by

directly measuring angular stellar diameters through fits to the squared visibility-baseline

dependence with an SII system extended to four telescopes to provide six simultaneous

baselines.

6.1 Observations of β CMa and ε Ori
We report here on observations of the two bright (mv < 2.1), hot (T > 22, 000 K) B

stars ε Ori (Alnilam) and β CMa (Mirzam) that were conducted using an SII system (see

Methods) installed onto the Very Energetic Radiation Imaging Telescope Array System

(VERITAS) IACTs shown in Figure 6.1 (Kieda et al., 2019). A total of 4.25 and 5.5 hours

of data were taken of ε Ori and β CMa, respectively, spanning the nights of December

12-14, 2019, local time. The interferometric (u,v)-plane coverage (Ségransan, 2007) for both

sources are shown in Figure 6.2.

The observations took place within a few days from the full moon when VERITAS does

not operate as a gamma-ray instrument as the night sky background light overwhelms the

faint Cherenkov signal. A custom camera is mounted near the focal plane of the VERITAS

telescopes directly in front of the gamma-ray camera to enable SII observations. The

starlight is passed through an interferometric filter with an effective center wavelength of

λ = 416 nm and bandpass of ∆λ = 13 nm that were chosen to match the peak reflectivity

and quantum efficiency of the mirrors and detector. The filtered starlight is then detected

by a photomultiplier tube. The resulting signal is continuously digitized and streamed to
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disk at a rate of 250 MS/s at each telescope. Correlations between the intensities recorded

at each telescope are performed off-line using a field-programmable gate array. We then

analyze the correlated data by correcting for instrumental and geometrical time delays,

background light effects, and applying noise cuts to obtain the squared first-order coher-

ence function |g(1)(τ, r)|2 that is proportional to the squared visibility measured in OAI.

It is a function of the path delay corrected time lag τ and projected baseline r that is

defined as the separation between the telescopes as viewed from the star. As the star

tracks through the sky, a given telescope pair will span a range of projected baselines.

The amplitude of |g(1)(r)|2 at τ = 0 measures the spatial coherence that is dependent on

the source angular brightness distribution and projected baseline, reaching a minimum at

the baseline r ∼ 1.22λ/θ for an observation wavelength λ and stellar angular diameter

θ. The angular diameter can then be determined by fitting the |g(1)(r)|2 measurements to

an appropriate visibility model for a given source angular brightness distribution (see the

Analysis section for more details). Stars that have a larger angular diameter will show a

more rapid decline in |g(1)(r)|2 in comparison to stars with smaller angular diameters.

Figure 6.3 presents the temporal (top) and spatial (bottom) correlation measurements

from the observations of β CMa (left) and ε Ori (right).

The top two panels show integrated |g(1)(τ)|2 correlations for various pairs of the

telescopes as a function of τ. The significant peak at τ = 0 is the signal associated

with the spatial coherence of the star. The width of the |g(1)(τ)|2 peak is determined

by the correlation between the combined telescope optics and detector time response at

each telescope. The dashed lines show Gaussian fits to the data. The Gaussian fit width,

representative of the temporal resolution time of the system, is fixed to 4 ns, as explained in

Methods, and the amplitude is left as a free parameter. The lower panels of Figure 6.3 show

values of |g(1)∗ (r)|2 representing the correlation resulting only from star-light. These values

are obtained by scaling the |g(1)(τ, r)|2 amplitude fit by a factor that accounts for the effect

of night sky background light and detector dark current. Each set of points are shown

as a function of the projected baseline and correspond to an average of 17 minutes of data

live-time per measurement. Using uniform-disk and limb-darkened models for the star an-

gular brightness distribution, we perform a fit to the data with the stellar diameter and the

zero-baseline correlation as free parameters. The shaded region shows the 68 % confidence
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regions obtained from the uniform-disk fit. The value of the zero-baseline correlation

should be on the order of the ratio of the electronic to the optical bandwidth, each set by the

instrumental system. In practice, the measured correlation can be affected by other factors

including the telescope mirror extent, and spectral absorption or emission lines. We find

that these additional effects are negligible in comparison to our measurement uncertainty,

and thus the zero-baseline value should be the same for both stars. The zero-baseline

normalization fit values are measured to be N0 = (1.23 ± 0.05) × 10−6 for β CMa, and

N0 = (1.26± 0.06)× 10−6 for ε Ori, consistent within fitted errors thus demonstrating the

reliability of the system to systematic effects in observations of different stars.

For β CMa, we find a uniform disk diameter of θUD = 0.523± 0.017 mas in agreement

with the original NSII measurements of θUD = 0.50 ± 0.03 mas (Hanbury Brown et al.,

1974a). In the case of ε Ori, we obtain θUD = 0.631± 0.017 mas, also in agreement with

the NSII measurements (θUD = 0.67 ± 0.04 mas). Using a limb-darkened model, given

by Equation 6.4, we find limb-darkened diameters of θLD = 0.542 ± 0.018 for β CMa

and θLD = 0.660 ± 0.018 for ε Ori. We note that the VERITAS stellar intensity interfer-

ometer (VSII) gave more precise angular diameter measurements in comparison to the

NSII, with less than a tenth of the observation time. The improvement is largely due

to the greater light collection areas of the VERITAS mirrors, as well as the increased in-

stantaneous baseline coverage offered by using multiple telescopes. To our knowledge,

the angular diameters of these stars have not been measured since the time of the NSII.

The current work thus provides confirmation of the NSII measurements of the stellar

angular diameters to better than 5% uncertainty, a required capability for many science

topics described later. Future observations can further reduce the uncertainty, as the root

mean square fluctuations in the correlation should reduce inversely with the square root

of the observation time. Here, we measure the uncertainty of the |g(1)(τ)|2 fluctuations at

a level of 2.0× 10−8 for several telescope pairs using the entire data set for ε Ori. These

values correspond to an uncertainty in the squared visibility of 1.6 % for the measured

zero-baseline correlation of N0 = 1.26× 10−6. Extrapolating these results to fainter stars

demonstrates the current capability to measure squared visibilities with a precision of

4.0 % for stars of magnitude 2.5 and 10 % for stars with magnitude 3.5 for equivalent

observation time. Direct comparison of these results with the NSII (Hanbury Brown et al.,
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1974a) shows an improvement in the sensitivity by a factor of 6. Future improvements

in the duty cycle and collimation of light through the narrowband filter offer expected

gains in the sensitivity by a factor of 2 to 3, thus offering the potential for optical intensity

interferometry measurements for stars with mB ∼ 5.

These two stellar angular diameter measurements with VSII demonstrate the feasibility

of performing optical interferometry with IACT arrays. The approach developed here

using high speed streaming with off-line correlations demonstrates the technical capa-

bility to perform optical intensity interferometry with tens to hundreds of telescopes, a

capability that remains challenging for modern OAI observatories. We also show that SII

observations increase the scientific output and scope of IACT observatories during bright

moonlight conditions when gamma-ray observations are otherwise limited. The future

Cherenkov Telescope Array (CTA) will employ up to 99 telescopes with up to kilometer

baselines in the Southern hemisphere, and 19 telescopes in the Northern hemisphere with

up to several hundred-meter baselines (Acharyya et al., 2019), allowing for unprecedented

angular resolution capabilities approaching the tens of microarcsecond scale. The large

number of telescopes would provide hundreds and possibly thousands of simultaneous

baselines. Capability studies of SII on a CTA-like observatory demonstrate the ability to

observe stellar targets brighter than a limiting visual magnitude of mV < 6 or 7 (Nuñez

et al., 2012). Science opportunities with a future CTA-SII observatory include surveying the

angular diameter of stars larger than ∼ 0.05 mas at short visible wavelengths, measuring

the orbital and stellar parameters of interacting binaries (Dravins et al., 2013), charac-

terizing the effects of gravity darkening and rotational deformation of rapidly rotating

stars (Nuñez and Domiciano de Souza, 2015), and imaging of dark or hot star spots (Nuñez

et al., 2012). The VSII observations presented here demonstrate the core requirements for

such an observatory, thus providing a technological pathway in addition to performing SII

observations with unprecedented sensitivity. Our results demonstrate the capability to at-

tain squared visibilities at the level of a few percent and therefore can directly complement

ongoing science campaigns pursued by current OAI observatories (Stee et al., 2017).
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6.2 Methods
6.2.1 Instrumentation

The VERITAS observatory at the Fred Lawrence Whipple Observatory, located in Amado,

AZ, consists of an array of four 12 meter diameter telescopes of the Davies-Cotton design.

The primary mirrors of each telescope consist of 345 hexagonal mirror facets arranged

in f/1 optics. SII hardware is mounted onto an aluminum plate that is installed in front

of the VERITAS gamma-ray camera. Initial tests of the hardware were performed in the

laboratory (Matthews et al., 2018b) and with on-sky tests at the StarBase-Utah observa-

tory (Matthews et al., 2018a). The equipment was then scaled for use on the VERITAS

telescopes with successful tests of correlated intensity fluctuations with two telescopes

(Matthews, 2019). On the plate, a 45◦ mirror redirects the light from the primary onto

an optical diaphragm with a diameter corresponding to approximately 0.1◦ on the sky.

The light then passes through an interferometric filter (SEMROCK 420/5) with a vendor-

specified center wavelength of 420 nm and bandpass of 5 nm. Since the light is not colli-

mated onto the filter, the effective bandpass is broadened due to the large angle of incident

light of up to 26.6 ◦. Calculations established the resulting bandpass to be centered on a

wavelength of 416 nm with an effective width of 13 nm. This effect reduces the overall

spectral density throughput, and correspondingly, the signal-to-noise by approximately

a factor of 2. The light is then detected by a Hamamatsu R10650 photomultiplier tube

(PMT) with a quantum efficiency of ∼ 30 % at the observing wavelength (Otte, 2011).

The gain of the PMT is controlled via battery-powered high voltage. The exact high

voltage delivered to the PMT is set by the duty cycle of a pulse-width modulator that is

connected to the high voltage supply via an optical fiber (Cardon et al., 2019). The output

current of the PMT is fed into a low-noise trans-impedance FEMTO HCA-200M-20K-C

200 MHz pre-amplifier. The voltage output of the pre-amplifier drives a long triaxial cable

that is connected to the data acquisition system. A National Instruments (NI) NI-5761

DC-coupled analog-to-digital (ADC) converter continuously digitizes the amplified PMT

signal at 250 MS/s with 14-bit resolution per sample over a peak to peak voltage range

of 1.23 V. Digitized values are passed to a NI PXIe-7965R module, which hosts a Virtex 5

SX95T field-programmable gate array (FPGA). The FPGA is programmed to downcast the

sampled value to an 8-bit integer, and push the data through a first-in-first-out buffer and
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then streamed to a 12TB NI-8265 RAID disk array at a data rate of 250 MB/s per telescope.

The ADC sample clock for each telescope is referenced and phase-locked to a common

external 10 MHz clock. To generate the reference clock, a centrally located White Rabbit

(WR) Switch is used to distribute a 10MHz clock through optical fiber connections to a

WR-Len module located near each of the data acquisition systems. The WR-Len module

takes in the optical fiber signal and generates the electronic 10 MHz signal to which the

ADC sample clock is referenced.

After observations are completed, the correlation between the stored data of each tele-

scope is processed off-line by a FPGA-based correlator. The FPGA is programmed to

retrieve the mean intensities of each time stream 〈I〉 = 1
N ∑N

i I(ti), for the sample i, and the

cross correlation between each pair of data streams, c(k) = 〈I1(ti)I2(ti+k)〉 = 1
N ∑N

i I1(ti)I2(ti+k),

where k is a digital time-lag inserted between the two channels. The correlation is calcu-

lated over 64 time-lag channels, corresponding to time-lags of -128 to +124 ns in steps of

4 ns.

6.2.2 Analysis

From the outputs of the correlator, the second-order coherence function can be calcu-

lated by normalizing the cross correlation by the product of the mean intensities

g(2)(τ, r) =
〈I1(t)I2(r, t + τ)〉
〈I1(t)〉〈I2(t)〉

(6.1)

where r = r1 − r2 is the projected baseline between the two telescopes, τ is the relative

time lag, and the brackets indicate a statistical average in time assuming a stationary light

source. For chaotic thermal light, such as that from a star, the second-order coherence

function can be written (Foellmi, C., 2009) in terms of the first-order coherence g(1)(τ, r),

g(2)(τ, r) = 1 + |g(1)(τ, r)|2. (6.2)

The van Cittert-Zernike theorem states that at τ = 0, the measured first-order coher-

ence is equivalent to the Fourier transform of the source angular intensity distribution

in the sky (Born and Wolf, 1980). For randomly polarized light, the squared modulus

of the first-order coherence is reduced by a factor of 1/2. In the typical case where the

detector resolution time T is much longer than the light coherence time τc ∼ 1/∆ν, where
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∆ν is the optical bandwidth, it is reduced by another factor of ∼ τc/T. We then write

the expected zero-baseline coherence as N0 = ετc/2T, where ε is a correction factor that

accounts for the shape of the detected light spectral density that sets the optical bandwidth

and corresponding coherence time. The correction factor also includes potential losses

in the coherence signal that, as detailed by Hanbury-Brown and Twiss (Hanbury Brown,

1974), are attributed to nonideal properties of the filters, detectors, and electronic readout

system that may influence the effective electronic or optical bandwidth. Under a uniform

disk approximation for a star of angular diameter θUD, the squared first-order coherence

can be written as

|g(1)∗ (τ = 0, r)|2 = N0

∣∣∣∣2 J1(xUD)

xUD

∣∣∣∣2 (6.3)

where xUD = πθUDr/λ, |g(1)∗ |2 is the coherence due to starlight alone, i.e., g(2)∗ = 〈I1∗ I2∗〉/(〈I1∗〉〈I2∗〉),
where I1∗ and I2∗ are the starlight intensities at detectors 1 and 2, J1 is the Bessel function

of the first kind, and λ is the mean observational wavelength. A linear limb-darkened

model (Hanbury Brown et al., 1974b) was also fit to the data, where the expected squared

first-order coherence is given by

|g(1)∗ (τ = 0, r)|2 = N0

(
1− uλ

2
+

uλ

3

)−2
(
(1− uλ)

J1(xLD)

xLD
+ uλ

√
π/2

J3/2(xLD)

x3/2
LD

)2

(6.4)

where uλ is the wavelength-dependent linear limb-darkening coefficient, and xLD = πθLDr/λ,

where θLD is the limb-darkened angular diameter.

The measured spatial coherence signal can be affected by detector dark current and

background light. The total signal intensity can be written as a sum of the starlight and

background light sources I(t) = I∗ + Ibkg, and using Equation 6.1, it is straightforward to

derive the relationship

|g(1)∗ |2 = |g(1)|2 × (1 + β1)(1 + β2) (6.5)

under the assumption that the fluctuations in the starlight-background and background-

background terms are uncorrelated (i.e., 〈∆I1∗∆I2bkg〉 = 〈∆I1bkg ∆I2∗〉 = 〈∆I1bkg ∆I2bkg〉 = 0),

where ∆I is the AC component of the given source intensity such that I(t) = 〈I〉+ ∆I(t).

The terms β1 and β2 are the ratios of the background to starlight intensity Ibkg/I∗ for a

given telescope.

Hanbury Brown and Twiss (1957) showed that the expected signal to noise ratio of the
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correlation due to the spatial coherence of the source, under a first-order approximation,

is given as

S/N = A α n |g(1)(r)|2
√

∆ f T0

2
(6.6)

where A is the telescope mirror area, α is the quantum efficiency of the detectors, n is the

spectral flux density of the source given in units of ph s−1 m−2 Hz−1, ∆ f is the electronic

bandwidth set by the time-response of the combined optical and electronic system, and T0

is the observation duration.

For a given run, typically 20 to 30 minutes in total duration, the value of
∣∣∣g(1)(τ)∣∣∣2 is

calculated over accumulation frames of 1 second. Any
∣∣∣g(1)(τ)∣∣∣2 frames contaminated by

correlated high-frequency radio pickup are removed. The Fourier transform of each frame

is calculated to identify corrupted frames. If the power at the specific noise frequency is

greater than the average power over all other frequencies by a predetermined threshold

cut, the frame is removed. For a typical run, 30 - 40 % of the data are removed as a result of

the electronic noise. Additionally, any frames are removed where the mean PMT current

falls below 5 µA, or approximately one-half of the total current due to star light. These

current losses are attributed to the attenuation of star light by clouds, or also imperfect

tracking that results in the collected star-light not centered onto the detectors. Each frame

is shifted in time by the average number of samples to zero optical path delay to correct

for the geometrical optical path-delay. After path-delay corrections and noise/current

cuts are applied, all |g(1)(τ)|2 frames are averaged together through a weighted mean

to produce a final |g(1)(τ)|2 frame for that run. The weights for each frame are given

by 1/σ2
|g(1)|2 where σ|g(1)|2 = σ〈I1 I2〉/ (〈I1〉〈I2〉), and where σ〈I1 I2〉 is the standard deviation of

the correlation over all time-lag bins for a given frame. Provided sufficient throughput and

spatial coherence, the corrected and averaged results reveal an excess peak at zero time lag

due to the spatial coherence of the source. In our case where the detector resolution time

is much greater than the coherence time of the light, the shape of the peak is determined

by the cross-correlation of the telescope and detector time response with an amplitude

proportional to the amount of spatial coherence. The Davies-Cotton mirror design of

the VERITAS telescopes introduces an approximate 4 ns spread in the arrival time of

photons that otherwise would arrive synchronously (Holder et al., 2006). A PMT detects

the photons, with a characteristic single photo-electron pulse width of 3.7 ns and additional
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timing jitter on the order of 1 ns. Simulations of these effects find that the
∣∣∣g(1)(τ)∣∣∣2 peak

can be modeled as a Gaussian following the form

f (τ) = Ae−
1
2 (τ−τ0)

2/σ2
τ + C (6.7)

with A, τ0, and C left as fit parameters. A is the amplitude of the coherence peak and di-

rectly measures |g(1)(r)|2, τ0 is a parameter that accounts for a variable start time between

the separated data acquisition systems and is constrained within |τ| < 10 ns of zero-lag,

and C is another correction parameter that subtracts off any drift in the mean level of

the correlator. The value of the fit width is fixed to a value of στ = 4.0 ns determined

empirically from the data and consistent with expectations from simulations. The value

of the width was obtained by allowing it to be a free parameter in the fit of the integrated∣∣∣g(1)(τ)∣∣∣2 correlation measurements for runs showing a peak amplitude with a p value

less than 3 ×10−7. The value of the fit width was stable within fit uncertainties for several

runs demonstrating that no significant fluctuations in the relative timing of the acquisition

systems are present.

The value of the fit amplitude and corresponding uncertainty are found for all runs to

measure
∣∣∣g(1)(τ = 0)

∣∣∣2 as a function of the projected baseline. The projected baseline is

calculated from the telescope positions and source sky position at the time of observation.

The value of the fit amplitude is then multiplied by the scaling factor described in Equation

6.5 to compensate for night sky background and detector dark current. The mean level of

the background is found by pointing the telescope off source and recording the average

intensity. These off runs are taken before and after each run on source. The background

light corrected values of |g(1)∗ |2 are then fit to a function with the form of Equation 6.3 in

order to obtain the uniform-disk normalization and stellar diameter. Values of the linear

limb-darkening coefficient uλ were estimated by interpolating existing tables that calculate

expected values of uλ from atmospheric parameters (Claret and Bloemen, 2011). Using the

atmospheric values listed in Table 6.1, for observations in the B band, a microturbulent

velocity of 2 km/s, and solar metallicity, we find values of uλ of 0.38 and 0.46 for β CMa

and ε Ori, respectively.
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Table 6.1: Atmospheric parameters used to estimate values of the linear limb-darkening
coefficient. The spectral type and B band magnitudes were obtained from SIMBAD.
a Taken from reference (Levenhagen and Leister, 2006), b taken from reference (Crowther
et al., 2006), c and taken from reference (Abt et al., 2002).

Source Spectral Type B Te f f (K) log(g) (dex) v sin(i) (km/s)

β CMa BII/III 1.73 24000 ± 500a 3.43 ± 0.10a 20 ± 7a

ε Ori B0Ia 1.51 27000 ± 1000b 2.90 ± 0.02b 65 ± 15c

Figure 6.1: The VERITAS array. The left image shows a photograph of VERITAS located
at the Fred Lawrence Whipple Observatory located in Amado, Az. The array consists
of four 12 m diameter telescopes, T1 (front-center), T2 (leftmost), T3 (rightmost), and T4
(back-center). The right plot shows a top-down view of the array with each of the radial
telescope separations.

Figure 6.2: Coverage of the sources in the (u,v)-plane. Each of the colored points represent
different runs for a given telescope pair.
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Figure 6.3: Temporal and spatial coherence measurements. The top two panels show
the averaged |g(1)(τ)|2 correlation measurements over the full live time between different
pairs of telescopes for β CMa (left) and ε Ori (right). Each respective telescope pair mea-
surement is color-coded matching the combinations shown in Figure 6.1. The uncertainties
are given by the standard deviation of the mean normalized correlation and are estimated
independently for each time-lag. The correlations are ordered by increasing average
baseline from the top, corresponding to decreasing spatial coherence. The dashed lines
show Gaussian fits to the data. The amplitude and corresponding fit uncertainty of the
|g(1)(τ)|2 peak over shorter time intervals are obtained as a function of the baseline and
shown by the individual points in the bottom panels. The uncertainty is determined by the
square root of the covariance matrix resulting from the fit. These measurements are fit to a
function that approximates the star as a uniform disk (see Equation 6.3) and includes free
parameters for the overall normalization and angular diameter. The shaded area shows
the 68 % confidence intervals determined through the uncertainty in the fit parameters.



CHAPTER 7

CONCLUSIONS

Stellar intensity interferometry can once again advance our understanding of stellar

astrophysics by improving the angular resolution and extending the spectral coverage

offered by current optical interferometric observatories. The advent of arrays of large

diameter optical telescopes and technological progress in the capabilities of detector and

data readout systems offer the potential for an SII observatory that is several orders of

magnitude more sensitive than the original Narrabri Stellar Intensity Interferometer and

can match, if not exceed, the limiting stellar magnitude of current state-of-the-art inter-

ferometric observatories at visible wavelengths. Intensity interferometry can be used for

high angular resolution observations of many interesting stellar systems to measure stellar

angular diameters, study of high-mass/early-type stars, the orbital motion and individual

components of close binary systems, and probe the surfaces and extended line regions of

emission-line stars.

The main astrophysical result of this work was of the diameter of two bright B stars,

β CMa and ε Ori. The angular diameters were obtained with a precision better than 5%,

improving the current measurement by a factor of two and was achieved using less than

1/10th of the prior observation time. These results clearly demonstrate an improvement

over the NSII. Future observations can extend these angular diameter measurements to

fainter stars previously unmeasured, or extended duration observations can be performed

to improve the uncertainty.

Future IACT arrays will employ tens of telescopes dispersed with up to kilometric

baselines (Acharyya et al., 2019), offering unprecedented (u,v)-plane coverage and reso-

lution capabilities. These observatories, while designed for gamma-ray astronomy, are

suitable for SII observations, and this realization has spawned a large amount of experi-

mental effort towards developing SII instruments with them. All major IACT observato-

ries (MAGIC, HESS, and VERITAS) are pursuing SII observations, where successful on-sky
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results have come very recently demonstrating the feasibility of SII observations with these

observatories. Here, SII observations were successfully performed using more than two

telescopes demonstrating a core capability for an intensity interferometry system within

future IACT arrays. A high-speed continuously digitizing system developed here allowed

for the processing correlations after observation providing a novel technical achievement

for intensity interferometry. An FPGA correlator was programmed to process the corre-

lations between all four pairs of telescopes on daily timescales. It therfore was able to

manage the large volume of data, on the order of tens of TB’s per night, generated in this

continuous streaming approach. The system can be readily scaled to additional telescopes

by duplicating the current system for each added telescope.

While IACT telescopes are attractive to use for SII, the relatively poor optical quality

presents a few unique challenges when using them as SII observatories. Particularly, the

fast optics and large PSF make it challenging to spectrally filter to a bandpass of a few

nanometers. The current system here takes advantage of the fact that the degradation of

the sensitivity is mitigated when using interferometric filters with a high coating refractive

index. For this initial implementation of the instrument, the optical system was kept very

simple consisting of a single narrowband filter placed in front of the PMT. Future work and

any proposed upgrade should attempt to improve the quality of the filter transmission

over the entire mirror area. In principle, a standard approach is to incorporating large

diameter collimating optics. There are also possibilities for using multiple interferometric

filter segments laid along a surface that minimizes the indicent angle of light from different

mirror annuli. We estimate that improving the quality of the filter transmission over the

mirror area can improve the sensitivity of the instrument by a factor of 2 to 3. Furthermore,

if a reasonably narrow band can be achieved, the possibility of observing within the emis-

sion lines of certain stars is opened to prove the extended circumstellar material associated

with the emission line. Since SII can operate at short optical wavelengths, this allows for

observation in several emission lines not available to current observatories including Hβ,

but also even other emission lines that are seen, for example, in the spectra of luminous

blue variable stars.
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Guerin, W., Dussaux, A., Fouché, M., et al. 2017, MNRAS, 472, 4126, doi: 10.1093/mnras/
stx2143
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Torres, G., Andersen, J., and Giménez, A. 2010, A&ARv, 18, 67, doi: 10.1007/

s00159-009-0025-1

van Belle, G., Baines, E., Boyajian, T., et al. 2019, arXiv e-prints, arXiv:1903.06750. https:
//arxiv.org/abs/1903.06750

van Belle, G. T. 2012, A&ARv, 20, 51, doi: 10.1007/s00159-012-0051-2

Weiss, S. A., Rupert, J. D., and Horch, E. P. 2018, in Optical and Infrared Interferometry
and Imaging VI, Vol. 10701, International Society for Optics and Photonics (SPIE), 255 –
261, doi: 10.1117/12.2313922

Zampieri, L., Naletto, G., Barbieri, C., et al. 2016, in Proc. SPIE, Vol. 9907, Optical and
Infrared Interferometry and Imaging V, 99070N, doi: 10.1117/12.2233688

Zmija, A., Deiml, P., Malyshev, D., et al. 2020, OExpr, 28, 5248, doi: 10.1364/OE.28.005248

https://cds.cern.ch/record/1215571
https://www.tib.eu/de/suchen/id/TIBKAT%3A584715161
http://doi.org/10.3847/1538-4357/ab8386
http://doi.org/10.3847/1538-4357/ab8386
https://arxiv.org/abs/1703.02395
https://arxiv.org/abs/1703.02395
http://doi.org/https://doi.org/10.1016/j.newar.2007.06.005
http://doi.org/https://doi.org/10.1016/j.newar.2007.06.005
http://doi.org/10.1093/mnras/stw288
http://doi.org/10.1093/mnras/stw288
http://doi.org/10.1142/S2251171713400047
http://doi.org/10.1142/S2251171713400047
http://doi.org/10.1007/s00159-009-0025-1
http://doi.org/10.1007/s00159-009-0025-1
https://arxiv.org/abs/1903.06750
https://arxiv.org/abs/1903.06750
http://doi.org/10.1007/s00159-012-0051-2
http://doi.org/10.1117/12.2313922
http://doi.org/10.1117/12.2233688
http://doi.org/10.1364/OE.28.005248

	Abstract
	LIST OF TABLES
	=10000 =10000=0  Stellar Interferometry
	Introduction
	Brief historical context

	Coherence properties of quasi-monochromatic light
	Temporal coherence
	Spatial coherence 
	Measuring coherence from intensity correlations
	The van Cittert-Zernike theorem

	Working principles of a stellar intensity interferometer
	Detector response time and optical bandwidth effects
	Effects of background light and dark current
	Expectation of the correlation

	Practical considerations for SII with imaging air Cherenkov telescopes
	Time-dispersion of photons
	Collimation and spectral filtering
	PSF


	=10000 =10000=0 Science applications for a modern SII observatory
	Signal to noise considerations
	Angular diameters
	Emission line and rapidly rotating stars

	=10000 =10000=0 Coherence measurements of a psuedo-thermal source
	Experimental setup
	Photon counter and correlator
	Visibility models for the laboratory sources
	Measurements of the temporal and spatial coherence

	=10000 =10000=0 Coherence measurements of a thermal source
	Experimental setup
	Observables and data reduction
	Review of II measurements
	Correlated noise reduction - ON/OFF analysis

	Results
	Validation of ON/OFF analysis
	Spatial coherence measurement
	Correlation between orthogonal and parallel polarized light

	Outlook

	=10000 =10000=0 The VERITAS Stellar Intensity Interferometer
	Instrument
	Camera
	Data acquisition
	Synchronization of data acquisition units
	Correlator

	Observations
	Installing the SII camera
	Data Taking

	Data analysis
	Correction for the optical path delay
	Noise cuts
	Correlator drift
	Measurement of the spatial coherence


	=10000 =10000=0 Demonstration of stellar intensity interferometry with the four VERITAS telescopes
	Observations of CMa and Ori
	Methods
	Instrumentation
	Analysis


	=10000 =10000=0 Conclusions



