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CHAPTER 1

Introduction

One of the great successes of modern astrophysics has been the development

of a standard cosmological paradigm that provides a model for the evolution

of the Universe on large scales (much larger 1 Mpc) from t ∼ 10−3 s to the

present day. However, the understanding of the underlying nature of several

key components of this cosmological picture is currently incomplete. Based on

a variety of observational data, the currently accepted model of the Universe is

one that includes two invisible components – dark matter (DM) and dark energy.

Thus far we have only succeeded in studying these components indirectly through

their gravitational influence. The identity of DM and dark energy remains a

mystery and is currently the object of intense scientific research.

This thesis presents the results of an indirect search for the particles compos-

ing DM undertaken with the Very Energetic Radiation Imaging Telescope Array

System (VERITAS) – a ground-based observatory sensitive to gamma-ray pho-

tons in the very-high-energy (VHE) regime above 100 GeV. The existence of DM

is supported by multiple sources of evidence encompassing observations that ex-

tend from cosmological scales to individual galaxies. There is significant scientific

reason to believe that DM is not composed of ordinary matter such as leptons,

baryons, and photons. For example, many promising DM particle candidates are

motivated by extensions to the Standard Model (SM) of particle physics. This

chapter describes the diversity of astrophysical evidence that supports the cur-
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rent model of DM and reviews some of the most theoretically favored candidates

for the DM particle. The chapter concludes with a discussion of the experimental

techniques that are currently used to search for the DM particle and the specific

role of DM searches with VHE gamma rays.

1.1 Cosmological Evidence

The most widely accepted theory for the origin and evolution of the Universe

is the Big Bang model. According to this model, the Universe began approxi-

mately 1010 years ago from a hot dense state in thermodynamic equilibrium from

which it has subsequently expanded. The Big Bang model is supported by sev-

eral key pieces of observational evidence: the homogeneity and isotropy of the

Universe on large scales, the redshift of distant galaxies, and the existence of

the cosmic microwave background (CMB). During the last decade, cosmological

data of increasing sensitivity and precision have led to the development of more

quantitative cosmological theories that are built on the Big Bang framework.

The current most widely accepted theory is the cosmological concordance model

known as ΛCDM.

In the ΛCDM model the current energy density of the Universe is divided

among three main components: baryonic matter, cold dark matter (CDM), and

dark energy. Baryonic matter consisting primarily of the constituents of normal

atoms (protons, neutrons, and electrons) comprises only 5% of the total energy

density while DM and dark energy comprise 23% and 72% respectively. To the

precision of current measurements, the properties of dark energy are consistent

with a cosmological constant, Λ, with an equation of state corresponding to a

vacuum energy density, while the DM component is best modeled as a cold colli-

sionless fluid. In the following sections the theoretical framework of the ΛCDM
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model and the cosmological data that provide the strongest evidence for DM are

briefly outlined. These data probe the dynamics of the Universe over a wide

range of times and physical states from the epoch of Big Bang Nucleosynthesis

(BBN) (t ∼ 100 s) to recombination (t ∼ 105 yr) and the subsequent era of galaxy

formation and dark-energy accelerated expansion (t & 109 yr).

1.1.1 Friedmann-Robertson-Walker Cosmology

The ΛCDM cosmology is founded on general relativity and the assumption of

homogeneity and isotropy on large scales. The most general spacetime metric

satisfying these conditions is the Friedmann-Robertson-Walker (FRW) metric,

ds2 = c2dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.1)

where (r, θ, φ) are comoving spherical coordinates, a(t) is the scale factor de-

scribing the size of the Universe with cosmic time (a = 1 at present), and k is

a constant describing the spatial curvature (k = 0,−1,+1 for universes that are

flat, negatively curved, and positively curved respectively). The evolution of the

scale factor for a universe containing components with a total energy density ρ

and relativistic pressure p is determined by the equations of general relativity

which reduce to the two Friedmann equations,

H2 ≡
(
ȧ

a

)2

=
8πG

3c2
ρ− kc2

R2
0a

2
, (1.2)

(
ä

a

)
= −4πG

3c2
(ρ+ 3p) , (1.3)

where R0 is the current radius of curvature and H is the Hubble parameter. The

Hubble parameter describes the rate of change of the scale factor and its current

value, the Hubble Constant, has a measured value, H0 = 100h km s−1 Mpc−1

with h = 0.742 ± 0.036 (Riess et al., 2009). Through the Friedmann equations
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the energy/matter content of the Universe directly influences its spatial curvature

and dynamics. A universe with a total energy density equal to the critical density,

ρc ≡
3c2H2

0

8πG
, (1.4)

has a spatially flat metric (k = 0). It is customary to measure the energy density

of different components of the Universe in units of the critical density usually

denoted as Ω(t) = ρ(t)/ρc. In terms of the present-day density parameter, Ω0,

the first Friedmann equation can be rewritten as

(
ȧ

a

)2
1

H2
0

= Ω(t) +
1 − Ω0

a2
. (1.5)

There are several components contributing to the energy density of the Universe

at present: non-relativistic matter (Ωm,0/a
3) with equation of state p = 0, radi-

ation (Ωr,0/a
4) with equation of state p = ρ/3, and dark energy (ΩΛ,0) for which

energy density remains constant with equation of state p = −ρ. In the context

of the cosmological studies, the scale factor a is frequently expressed through the

redshift, 1 + z = 1/a.

1.1.2 Cosmic Microwave Background

Perhaps the strongest evidence for DM comes from the study of the cosmic mi-

crowave background (CMB) fluctuations. During the epoch of recombination

(z ∼ 1100), electrons and protons combined to form neutral hydrogen atoms

causing the Universe to become suddenly transparent to photons. This radiation

which became decoupled from thermodynamic equilibrium with electrons and

protons is known as the CMB. The CMB has a nearly perfect blackbody radi-

ation spectrum with T = 2.725 K and temperature fluctuations (anisotropies)

present at the scale of 10−5. These anisotropies are the signature of acoustic

sound waves in the photon-baryon fluid at recombination that were driven by
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Figure 1. WMAP five-year temperature (TT) power spectrum. The red

Figure 1.1 CMB angular power spectrum measured using the five-year WMAP

data set. The solid line indicates the best fit ΛCDM model with (Ωmh
2, Ωbh

2,

h) = (0.131, 0.0227, 0.724). Figure taken from Nolta et al. (2009).

perturbations in the gravitational potential. After the photons decoupled, the

phases of the acoustic modes were frozen and appear today as a series of peaks

and troughs in the observed angular power spectrum (see Figure 1.1). Analysis

of the positions and amplitudes of the peaks can be used to constrain a variety

of cosmological parameters including the ratio of DM to baryon energy density

at the time of recombination. From the analysis of the five-year WMAP data set

(Komatsu et al., 2009), the best fit parameters for the energy density in baryons,

matter, and dark energy assuming a ΛCDM cosmological model are

Ωbh
2 = 0.02273 ± 0.00062 Ωmh

2 = 0.1326 ± 0.0063 ΩΛh
2 = 0.742 ± 0.030,

(1.6)

indicating the existence of a significant non-baryonic matter component in the

Universe primarily responsible for the gravitational potential perturbations at

the epoch of recombination.
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1.1.3 Big Bang Nucleosynthesis

Big bang nucleosynthesis (BBN) is the epoch during which the expansion of

the Universe reduced the rate of the interaction between protons, neutrons, and

neutrinos thereby freezing the abundances of the light elements such as deuterium

(D), helium-3 (3He), helium-4 (4He), and lithium-7 (7Li). These relic abundances

are sensitive to the total baryonic content of the Universe through the ratio of the

number density of baryons to photons expressed in terms of the baryon-to-photon

ratio parameter η10 ≡ nb/nγ × 1010. BBN began when the temperature of the

Universe was cool enough to allow the formation of deuterons (∼ 109 K). Free

neutrons were rapidly converted to 4He through a sequence of reactions involving

D, 3He, and 3H. The production of 4He continued until T ∼ 108 K (t ∼ 103 s)

when the temperature became insufficient to sustain further reactions, leaving

a small residual fraction of unprocessed D and 3He. The relic abundance of

7Li is determined by a more complex chain of reactions. After BBN, the relic

abundances of the light elements remained frozen until the epoch of star formation

when these primordial abundances were altered by stellar nucleosynthesis. The

sensitivity of the light element abundances to η10 arises because a higher baryon-

to-photon ratio allows BBN to start earlier resulting in a more efficient production

of 4He and lower abundances of D and 3He. If all interactions during BBN are

described by the SM of particle physics, the relative abundances of the light

elements can be predicted to high accuracy as a function of η10 (see Figure 1.2).

Among the light elements produced during BBN, deuterium has the greatest

sensitivity to η10. Deuterium is destroyed but not created by stars and thus

any measurement of the deuterium abundance sets a strict lower limit on the

relic abundance. The best estimates of the relic deuterium abundance come

from the study of neutral hydrogen absorbers in the emission spectra of distant
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Figure 1.2 Predicted abundances of D (blue), 3He (red), 4He (purple), and 7Li

(green) as a function of the baryon-to-photon ratio (η). The width of each band

indicates the theoretical uncertainty in its calculation. Hashed vertical bands

show the 95% C.L. interval on η inferred from BBN abundances and CMB mea-

surements. Figure taken from Particle Data Group et al. (2008).
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quasars. An average of the measured deuterium abundances from six quasar

systems indicate a value of η10 = 6.0 ± 0.4 (Steigman, 2007) that corresponds to

an energy density in baryons of Ωbh
2 = 0.0219±0.002. If the Universe is assumed

to be flat (Ω0 = 1) as implied by measurements of the CMB, baryonic matter

cannot comprise more than ∼ 5% of the total energy density of the Universe and

an additional non-baryonic component is required. This value is in remarkable

agreement with energy density in baryons measured by WMAP.

1.1.4 Large Scale Structure

The observed large scale distribution of galaxies also requires a significant non-

baryonic component. According to the standard theory of structure formation,

the structures that exist today in the form of stars, galaxies, and clusters of

galaxies grew from initial perturbations in the gravitational potential that are

thought to be seeded by quantum fluctuations during epoch of inflation. As the

Universe evolved from this initial inflationary state, the regions with a density

higher than the average background density (expressed in terms of the density

contrast δ (x) = (ρ (x)−〈ρ〉)/ 〈ρ〉) were able to grow due to gravitational collapse.

During the matter-dominated epoch, density fluctuations grew as (1 + z)−1 until

δ ∼ 1 when they entered a non-linear regime in which they collapsed and formed

gravitationally bound structures.

In a universe containing only baryonic matter, the growth of density pertur-

bations on scales less than a Jeans mass is inhibited prior to recombination by

the coupling of matter and radiation. The amplitude of the temperature fluctua-

tions in the CMB implies that the largest density contrasts in baryonic matter at

the time of recombination had an amplitude of ∼ 10−5. In a matter-dominated

universe, these density contrasts could only grow by a factor of 103 between re-
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Figure 1.3 Left: Reconstructed power spectrum of the DM halo density field

traced by luminous red galaxies (LRGs) in the SDSS Seventh Data Release. Solid

black line shows the best-fit ΛCDM model to both the SDSS LRG sample and

the five-year WMAP data set with (Ωm,Ωb,ΩΛ) = (0.291, 0.0474, 0.709). Figure

taken from Reid et al. (2010). Right: Comparison of independent constraints on

(Ωm,ΩΛ) inferred from the SDSS LRG sample (black lines), WMAP five-year data

set (blue shaded contours), and the Union type Ia supernovae data set (Kowalski

et al., 2008) (green shaded contours). Figure taken from Reid et al. (2010).
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combination (z ∼ 1100) and today which is insufficient to form the present-day

structures with δ ≫ 1. The existence of DM provides a simple solution to this

problem. Because DM decouples from radiation at early times, density fluctua-

tions in DM could begin growing during the epoch of matter-radiation equality.

After recombination, the baryons collapsed into the existing density perturba-

tions of DM, and the baryon density perturbations rapidly grew to the same

amplitude as the DM perturbations. Recent studies of the matter power spec-

trum measured by large redshift surveys such as the Sloan Digital Sky Survey

(SDSS; York et al. 2000) have allowed structure formation models incorporating

DM to be tested more quantitatively (see Figure 1.3). With the assumption of

a flat universe, the analysis of the matter spectrum measured from the luminous

red galaxy (LRG) sample in the SDSS Data Release 7 implies Ωmh
2 = 0.14±0.01.

As shown in Figure 1.3 the region in the (Ωm,ΩΛ) parameter space preferred by

measurements of large scale structure is in good agreement with the independent

constraints derived from the CMB (Komatsu et al., 2009) and surveys of type Ia

supernovae (Kowalski et al., 2008).

1.2 Astrophysical Evidence

Observations of gravitationally bound systems have long supported the existence

of a significant nonluminous matter component in the Universe. The earliest ev-

idence for DM is attributed to Fritz Zwicky who observed a velocity dispersion

for galaxies in the Coma cluster that was much larger than would be expected

from the luminous matter in this system (Zwicky, 1933). Despite these early

observations, the DM hypothesis was not widely accepted until the detailed mea-

surements of galactic rotation curves (Rubin & Ford, 1970) that demonstrated a

significant DM component in spiral galaxies. The presence of DM has since been
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clearly identified in a variety of systems spanning a wide range of spatial scales

from the dwarf galaxies to galaxy clusters. For a review of the observational

evidence for DM see Bertone et al. (2005).

1.2.1 Spiral Galaxies

Prior to the advent of precision cosmological measurements, the observation of

the rotation curves of spiral galaxies provided some of the strongest evidence for

the existence of DM. The visible matter in a spiral galaxy can be modeled in

terms of both a bulge and disk component with the mass in the disk component

falling exponentially as a function of distance from the center. Stars and gas in

the disk travel in approximately circular orbits around the galactic center and

these motions can be used to study the mass enclosed at each radius,

M(r) =
vc(r)

2r

G
, (1.7)

where G is Newton’s gravitational constant and vc(r) is the circular velocity at

radius r. In principle the rotational velocity can be measured with any luminous

tracer of the matter distribution. Measurements of galactic rotation curves are

typically carried out by observing the spectral lines associated with the rotational

transitions of CO and the 21 cm line of neutral hydrogen (HI).

If the gravitational potential of the galaxy is dominated by visible matter, the

velocity curve should decline as r−1/2 at the periphery of the galaxy when the

enclosed mass of the luminous matter saturates. However, observations of many

spiral galaxies have found rotation curves that are flat or rising with radius out

to the visible extent of the disk. These observations suggest that spiral galaxies

are embedded in a large DM halo. Figure 1.4 illustrates the measured rotation

curve of the nearby spiral galaxy M33.
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Figure 1.4 Rotation curve (points) of the spiral galaxy M33 measured with 21 cm

transition of HI. The solid curve indicates the best fit model for the measured

rotation curve with contributions from a DM halo (dot-dashed line), a stellar

disk (short dashed line), and a gaseous disk (long dashed line). Figure taken

from Corbelli & Salucci (2000).
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1.— : Color image from the Magellan images of the merging cluster 1E 0657 558, with the white bar indicating 200 kpc at the distance of the

Figure 1.5 Optical (left) and x-ray (right) images of the merging galaxy cluster

1ES 0657-558. Green contours indicate the surface mass density reconstructed

from the gravitationally lensed background galaxies. Figure taken from Clowe

et al. (2006).

1.2.2 Merging Galaxy Clusters

Perhaps the most compelling evidence for the existence of DM on non-cosmological

scales comes from the observation of several unique colliding galaxy clusters

(Clowe et al., 2006; Bradač et al., 2008). In these systems, the majority of the

baryonic mass is present in the form of hot x-ray emitting intracluster plasma. As

the galaxy clusters collide the plasma responds to pressure forces while the colli-

sionless stars pass through unimpeded resulting in a spatial separation between

these two components. The “Bullet cluster” 1E 0657-558 was one of the first such

systems in which this separation could be clearly observed (Clowe et al., 2006).

The projected mass density profile of the system inferred from gravitational lens-

ing of background galaxies by the foreground galaxy cluster (see Figure 1.5) shows

a clear offset between the gravitational mass and the main baryonic plasma com-

ponent in the system. This observation demonstrates that the dominant mass

component in this system must be in some invisible and collisionless form. A
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second merging cluster system, MACS J0025.41222, has been subsequently ob-

served to demonstrate a similar separation between the dominant gravitational

and baryonic mass components (Bradač et al., 2008).

1.2.3 Dwarf Spheroidal Galaxies

The dwarf spheroidal (dSph) galaxies of the Milky Way (MW) are the smallest

and least luminous galaxies in which DM has been unambiguously detected. The

dSphs are faint satellites of the MW having stellar luminosities < 107L⊙ and are

characterized by old, metal-poor stellar populations. The majority of dSphs are

found at a distance of 20–100 kpc from the MW enabling detailed studies of their

internal kinematics from the line of sight motions of individually resolved stars.

The stellar velocity dispersions in these systems are much greater than would

be inferred from the distribution of luminous matter implying the presence of an

extended DM halo. The number of known dSphs has significantly grown in recent

years with the discovery of a new population of very low luminosity systems (103–

104 L⊙) (Willman et al., 2005; Irwin et al., 2007; Belokurov et al., 2007) with

data from the SDSS. Despite being significantly fainter than previously known

systems, these ultrafaint dSphs appear to have DM halo of similar mass to larger

systems (Strigari et al., 2008a; Walker et al., 2009) and thus have extremely high

mass-to-light ratios, M/L ∼ 1000.

1.3 DM Candidates

Although there is overwhelming astrophysical evidence for the existence of DM,

its particle constituent is unknown. The astrophysical data impose significant

constraints, however, on the properties of a plausible candidate DM particle. The
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combination of measurements of CMB anisotropies, light element abundances

from BBN, and large scale structure of the Universe indicate that DM must

be in a non-baryonic form that was cold (non-relativistic) during the structure

formation epoch. Furthermore the total energy density in DM particles must

satisfy the relic density required by ΛCDM, ΩDMh
2 = 0.1131± 0.0034 (Komatsu

et al., 2009). This second constraint implies that the DM particle must be stable

with a lifetime exceeding or at least comparable to the age of the Universe. To

prevent efficient interaction of DM particles through electromagnetic channels

and the formation of anomalous heavy isotopes that have been excluded by direct

searches, the DM particle should also preferably be neutral (Taoso et al., 2008).

1.3.1 Weakly Interacting Massive Particles

There are many particle candidates proposed from theoretical considerations that

satisfy the properties of astrophysical DM (Taoso et al., 2008). However several

favored candidates discussed in this thesis are additionally motivated by cosmo-

logical considerations. For example, a thermal relic of the early Universe with

a mass and interaction cross section on the weak scale will naturally produce

the present-day DM density. Such a candidate is generically referred to as a

weakly interacting massive particle (WIMP). The relic density of WIMPs is de-

termined by the process of freeze-out when the rate of the interactions of the

WIMPs through which they are coupled to the other components of the Universe

becomes smaller than the rate of the expansion of the Universe (Kolb & Turner,

1990). This occurs when T ≃ mWIMP/20 indicating that the WIMP at the de-

coupling time is non-relativistic. Prior to freeze-out, the chemical potential of

WIMPs must be equal to zero and therefore the equilibrium number density of
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Figure 1.6 Evolution of the comoving number density of WIMPs as a function of

inverse temperature in units of the WIMP mass. The solid line indicates the equi-

librium solution for WIMP number density while the three dashed lines illustrate

the freeze-out densities for three values of the thermally averaged annihilation

cross section. Figure taken from Jungman et al. (1996).
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WIMPs declined exponentially with temperature according to

neq = g

(
mWIMPkT

h2

)3/2

exp

(
−mWIMPc

2

kT

)
, (1.8)

where g is the number of internal degrees of freedom of the WIMP. The equilib-

rium number density was maintained until the rate of WIMP interactions dropped

below the expansion rate of the Universe (Γ . H) at which point the number

density was frozen. The simplified time evolution of the WIMP number density,

n, during freeze-out is governed by the Boltzmann equation,

dn

dt
+ 3Hn = 〈σAv〉

[
n2 − (neq)2

]
(1.9)

where H is the hubble expansion rate and 〈σAv〉 is the thermally averaged cross

section for WIMP self-annihilation. Numerical solutions for the WIMP number

density versus temperature for different values of 〈σAv〉 are illustrated in Fig-

ure 1.6. As the thermally averaged annihilation cross section is increased, the

relic density of WIMPs drops. An approximate relationship between the relic

density and the annihilation cross section for a particle with a weak-scale mass

(Jungman et al., 1996) is given by

ΩWIMPh
2 ≃ 3 × 10−27 cm3 s−1

〈σAv〉
. (1.10)

Thus to first order the WIMP relic density is independent of mass, and a cross

section on the order of the weak scale is needed to produce the observed relic

density. An upper bound on the WIMP mass comes from the unitarity limit on

the thermal relic, mWIMP . 120 TeV (Griest & Kamionkowski, 1990). Accelerator

searches for the WIMP suggest a lower bound of mWIMP & 10 GeV (Bottino et al.,

2003).

The SM of particle physics describes elementary particles of matter and their

interactions in terms of the strong, weak, and electromagnetic forces. The SM
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is in excellent agreement with experimental data collected at particle colliders,

and therefore a successful DM particle candidate should fit into the framework of

SM or its possible extensions. The weakly-interacting neutrino is the only known

SM particle that could be considered as a possible DM candidate. However,

the cosmological constraint on the energy density of all left-handed neutrinos of

Ωνh
2 < 0.0072 from CMB observations (Komatsu et al., 2009) excludes neutrinos

from constituting the majority of DM. Because the light weakly-interacting neu-

trinos would be hot (relativistic) during structure formation, their non-dominant

contribution to DM is also consistent with observational evidence from structure

formation (Section 1.1.4). Although a weakly-interacting neutrino is not compat-

ible with the characteristics of the WIMP, several possibilities within extensions

to the SM exist. Two of the most well-developed frameworks for physics beyond

the SM are Supersymmetry (Section 1.3.3) and Universal Extra Dimensions (Sec-

tion 1.3.4) both of which predict potential WIMP candidates.

1.3.2 Axions

Independent of the observational evidence for DM there are strong reasons to be-

lieve that the SM is incomplete and part of a more fundamental theory that would

predict the existence of new particles. Axions are a non-WIMP DM candidate

that were originally proposed to explain the absence of CP violation in strong

interactions and provide a mechanism for the vanishingly small dipole moment of

the neutron (Peccei & Quinn, 1977; Dress et al., 1977). Although the existence of

the axion is motivated by particle physics, it becomes a viable candidate for DM

if its mass is in the range 10−6–10−2 eV. Axions with masses above this range

are excluded by laboratory searches, stellar evolution constraints, and models for

the neutrino emission from SN1987A. In order for very light axions to constitute
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cold DM they must be produced non-thermally. The misalignment mechanism

(Preskill et al., 1983) is an example of such a production mechanism for axions

in the early Universe and results in an axion relic density of

Ωah
2 ≃ 0.3

(
6 µeV

ma

)7/6

, (1.11)

where ma is the axion mass (Particle Data Group et al., 2008). An axion produced

via this mechanism is therefore expected to have ma ≃ 10 µeV in order to have the

correct DM relic density (Ωah
2 ≃ 0.1). However other non-thermal production

mechanisms could satisfy the DM relic density constraint for significantly larger or

smaller axion masses. The best constraints on cosmological axions come from the

Axion Dark Matter Experiment (ADMX) which uses a microwave cavity to search

for the conversion of axions to microwave photons and has ruled out interesting

regions of axion parameter space in the mass range 1.9–3.53 µeV (Asztalos et al.,

2010). Although axions are a well-motivated DM candidate, the signatures of

their interaction with ordinary matter are outside of the detectability range of

the experimental techniques utilized in this thesis.

1.3.3 Supersymmetric DM Candidates

The theory of supersymmetry (SUSY) is an extension to the SM in which particles

with the required properties of the WIMP can often emerge naturally. SUSY is

based on the only known nontrivial symmetry relating the properties of spacetime

bosons and fermions that has not been experimentally discovered. A consequence

of this symmetry is that every particle in the SM must have a superpartner with

spin differing by 1/2 unit. One of the original theoretical motivations for SUSY

was its ability to address the hierarchy problem of the SM – the large difference

between the electroweak (∼ 100 GeV) and the Planck (∼ 1019 GeV) energy scales.

Radiative corrections to the mass of the SM Higgs boson (the only particle in the
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Figure 1.7 Representative diagrams contributing to the annihilation of the neu-

tralino: s-channel pseudoscalar higgs boson (A0) exchange to fermions (a), t-

channel sfermion (f̃) exchange to fermions (b), t-channel chargino exchange to

W bosons (c), and one loop t-channel sfermion exchange to two photons (d).

Feynman diagrams reproduced from Jungman et al. (1996) and Bergström &

Ullio (1997).

SM model that has not been discovered) lead to a quadratic divergence that is

constrained at a high energy scale where new physics is assumed to appear. The

introduction of new scalar superpartners in SUSY at approximately the Higgs

boson mass scale cancels this quadratric divergence (Haber & Kane, 1985). An-

other motivation for SUSY theories is that they provide a mechanism to unify

the gauge coupling constants of the strong, weak, and electromagnetic forces at

a single high energy scale. Such a unification is critical for grand unified theories

that seek to incorporate the fundamental forces into a larger gauge group (Georgi

& Glashow, 1974). Because no supersymmetric particles have been detected, su-

persymmetry is assumed to be a broken symmetry with supersymmetric particle

masses at some higher energy scale. If supersymmetry is associated with the ori-

gin of the electroweak scale, it is natural for the supersymmetric particle masses

to be ∼TeV.

The simplest realization of SUSY is the minimal supersymmetric extension of

the standard model (MSSM) (for a review see Haber & Kane 1985) that intro-
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duces the minimum number of new particles to the SM:

• A set of spin-0 superpartners to the quarks and leptons referred to as squarks

and sleptons.

• A set of spin-1/2 superpartners to the SM gauge bosons, the gluinos (g̃),

winos (W̃±, W̃ 0), and binos (B̃), which are collectively referred to as gaug-

inos.

• Two SM spin-0 complex higgs doublets, Hd = (H0
d , H

−
d ) andHu = (H0

u, H
+
u ),

giving mass to down-type and up-type fermions respectively.

• Two charged and two neutral spin-1/2 higgsinos (h̃±, h̃01,2).

The supersymmetric fermionic states with the same quantum numbers mix to

produce the following mass eigenstates:

• Four neutralinos (χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4) which are linear combinations of the binos,

winos, and neutral higgsinos.

• Two pairs of charginos (χ̃±
1 , χ̃±

2 ) which are linear combinations of the winos

and charged higgsinos.

In order not to violate experimental limits on the lifetime of the proton, the MSSM

also imposes a new discrete symmetry known as R-parity (Dimopoulos & Georgi,

1981). Supersymmetric particle have R = −1 while SM particle have R = 1.

The conservation of R-parity in interaction and decay processes guarantees that

the lightest supersymmetric particle (LSP) will be stable and thus makes it a

plausible DM candidate (Ellis et al., 1984).

The MSSM does not provide an explicit model for the mechanism of supersym-

metry breaking but instead introduces a set of soft (low-energy) supersymmetry-

breaking terms in the Lagrangian that are treated as free parameters of the model.
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Including all couplings, masses, and mixing angles, the fully unconstrained MSSM

has more than 100 free parameters. A simplification of the large MSSM parame-

ter space can be achieved by adopting a specific renormalization procedure that

relates the full MSSM parameter space at low energies (∼TeV scale) to a reduced

parameter set defined at high energies (unification scale). A widely considered

SUSY framework of this type is minimal supergravity (mSUGRA) (Nilles, 1984)

in which SUSY breaking is mediated by gravitational effects. This framework re-

duces the full MSSM to five parameters: a scalar unification mass (m0), a gaugino

unification mass (m1/2), a universal trilinear coupling constant (A0), the ratio of

the vacuum expectation value of the two Higgs fields (tanβ), and the sign of

the higgsino mass parameter (sign(µ)). Alternatively a purely phenomenological

approach to setting MSSM parameters can be adopted (pMSSM) that does not

provide a mechanism for SUSY-breaking but assigns common values to the low-

energy SUSY parameters. A specific realization of the pMSSM used in this work

is the seven parameter set defined by the DarkSUSY package (Gondolo et al.,

2004).

Two of the most frequently considered DM particle candidates within the

MSSM are the gravitino (G̃), the spin-3/2 superpartner of the graviton, and the

lightest neutralino (χ̃0
1). Because the gravitino coupling is suppressed by the

Planck energy scale, its interaction and annihilation rates would be extremely

weak making direct experimental detection of relic DM particles impossible.

Gravitinos with the correct relic density can be produced thermally if they are

very light (mG̃ ≃ 100 eV) and would constitute warm DM at the time of struc-

ture formation (Pagels & Primack, 1982). However, observational constraints

from structure formation which imply mG̃ & 2 keV (Seljak et al., 2006) currently

disfavor these models. Heavy gravitinos (mG̃ ≃ 1 TeV) would satisfy the cold

DM requirement and could be produced by late decays of the next-to-lightest
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supersymmetric particle (NLSP) (Feng et al., 2004).

The lightest neutralino has the best prospects for experimental detection and

is generically expected to be the LSP in the mSUGRA framework. Hereafter in

this thesis the term neutralino is used to refer to the lightest neutralino (χ ≡ χ̃0
1).

Since neutral vector fields are self-conjugate, the corresponding supersymmetric

partners (e.g. the neutralinos) are Majorana fields and self-annihilate. The neu-

tralino has couplings suppressed at the weak energy scale and therefore could po-

tentially be detected through either self-annihilation or scattering off of nucleons.

The leading neutralino self-annihilation channels are those to fermion-antifermion

pairs and gauge boson pairs (see Figure 1.7).

1.3.4 Universal Extra Dimensions

Another proposed extension to the SM that generically predicts the existence of

WIMPs are theories of Universal Extra Dimensions (UED). In these theories, all

SM particles propagate in one or more compact extra dimensions with a com-

pactification radius R. For UED models with a single extra dimension, precision

electroweak measurements constrain R−1 & 300 GeV (Appelquist et al., 2001).

As a result of the existence of these compactified extra dimensions, every SM par-

ticle has an associated set of excited states, Kaluza-Klein (KK) excitations, with

identical SM quantum numbers and masses m ∼ nR−1 where n is the excitation

quantum level. Momentum conservation in the extra dimensional space leads to

conservation of KK parity which in analogy to R-parity in SUSY models makes

the lightest KK-excited particle (LKP) stable and thus a potentially good DM

candidate. The most promising candidate for the LKP is the first KK excitation

of the B hypercharge gauge boson denoted as B(1). The B(1) can generically sat-

isfy constraints on the DM relic density generated through the thermal freeze-out
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process if its mass is in the range 500–800 GeV (Servant & Tait, 2003). A re-

cent review of the phenomenology of UED models is given in Hooper & Profumo

(2007).

1.4 DM Searches

The task of identifying the WIMP particle has motivated several complementary

experimental techniques. Particle accelerators such as the Large Hadron Collider

(LHC) can potentially discover WIMPs by direct production in collisions with a

center of mass energy greater than the rest mass of the WIMP (for a review see

Feng 2010). Direct detection experiments search for WIMP-nucleon recoils using

low-background detectors (for a review see Spooner 2007). Finally, indirect dark

matter searches use ground- or space-based detectors to search for the secondary

particles produced by the annihilations or decays of WIMPs (for a review see

Bertone et al. 2005). Ideally the unambiguous identification of the WIMP would

be achieved using multiple techniques. The conclusive association between a

WIMP particle candidate discovered at the LHC and astrophysical DM would

require its detection through direct or indirect methods. Indirect detection of

the WIMP with gamma rays in principle allows the direct association of WIMP

particle properties with DM properties in astrophysical systems. The search for

VHE gamma-ray signatures from WIMP self-annihilation is the prime focus of

this thesis.

1.4.1 Accelerator Searches

The detection of new physics signatures in particle accelerator experiments may

provide evidence for the nature of DM. Searches for supersymmetric particles at

24



the e+e− collider LEP at CERN set lower limits on the masses of charged super-

symmetric particles in the range 80–100 GeV (Particle Data Group et al., 2008).

Within the mSUGRA framework with unified gaugino masses, these constraints

imply mχ & 50 GeV (Bottino et al., 2004). The currently operating LHC with

a center-of-mass design energy of 14 TeV should be sensitive to new particles

at the TeV scale. However, since the WIMP is stable and weakly-interacting,

direct production of WIMP pairs is invisible and the detection of the other direct

production signatures is challenging (Feng, 2010). In the case of SUSY, the best

detection prospects would arise from the production of heavier superparticles

that would decay via a cascade of quark and gluon jets to the LSP. These events

should be detectable at LHC by searching for signatures of missing transverse en-

ergy. Because the center-of-mass energy in each LHC interaction is unknown, the

extraction of precise masses and cross sections of the LSP which would allow the

unambiguous identification with DM is challenging. Baltz et al. (2006) showed

that for some optimistic SUSY benchmark scenarios the LHC could measure the

mass of the neutralino to 5–10% accuracy and place a constraint on its relic

density of ∼50%. If LHC discovers signatures of SUSY, the precise determina-

tion of the properties of the supersymmetric particles would be best accomplished

with a future high-energy e+e− collider such as the proposed International Linear

Collider (Baltz et al., 2006). Because of the difficulties of WIMP identification

and characterization in accelerator searches, complementary search techniques

are critical.

1.4.2 Direct Detection

A widely pursued method of direct detection of WIMP DM is to search for the

signatures of the interactions of these particles with ordinary matter such as
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nuclear recoils in terrestrial detectors. The energy transferred to nucleons in

these interactions can be detected through the ionization, scintillation, or heat

(phonons) generated in the detecting medium. Assuming an isotropic distribution

of WIMPs with an RMS velocity 230 km s−1 characteristic of the gravitational

potential of the Milky Way at the location of Earth, the anticipated kinetic en-

ergies of the WIMPs are ∼ 50 keV for a 100 GeV WIMP and would impart

energies of 10s of keV in these recoils. In general, the scattering cross section can

be divided into spin-dependent and spin-independent terms. The latter is pro-

portional to the atomic mass of the nucleus and is expected to give the dominant

contribution to the detection rate for the majority of WIMP models. Because

the anticipated detection rates are extremely low (< 1 event kg−1 day−1), low

background operation and large detection mass are critical. To achieve these re-

quirements, the majority of current direct dark matter detectors employ at least

two detection signatures and are typically located in deep underground facilities

to reduce background from cosmic rays. Unlike the annihilation cross section, the

WIMP-nucleon scattering cross section is not expected to be directly connected

to the DM relic density and therefore is WIMP model-dependent. For instance,

scans of the mSUGRA parameter space have found models satisfying the DM

relic density with spin-independent cross sections spanning a large range, 10−6–

10−12 pb (Ellis et al., 2005; Roszkowski et al., 2007). It is possible to generate

SUSY models for which the annihilation cross section is effectively zero.

Current direct detection experiments have achieved a sensitivity to spin-

independent interaction cross sections of ∼ 10−7 pb (10−43 cm2) and are probing

regions of the parameter space for supersymmetric WIMP models (see Figure 1.8).

The Cryogenic Dark Matter Search (CDMS) uses solid-state cryogenic Ge and

Si detectors to measure both ionization and phonon signatures of WIMPs. An

experiment that uses a similar technique is EDELWEISS (Sanglard et al., 2005).
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CDMS-II has reported the best limits on the WIMP cross section of < 4×10−8 pb

for a WIMP mass of 70 GeV. Another class of direct detection experiments use

noble liquids such as liquid xenon as a detection medium and measure simul-

taneously the prompt scintillation photons and ionization generated by nuclear

recoils. The XENON10 (Aprile et al., 2009) and ZEPLIN III (Lebedenko et al.,

2009) experiments are both examples of detectors of this type and have reported

limits of comparable sensitivity to CDMS-II.

The DAMA experiment which searches for the scintillation signature of WIMPs

using low-background NaI crystals is the only experiment to have reported a sig-

nal that could be interpreted as DM. The DAMA collaboration report an annual

modulation in their data with a statistical significance of 8.9σ which is consis-

tent with the expected modulation in the WIMP velocity due to the orbital

motion of the Earth (Bernabei et al., 2008). Although the DAMA result was

originally believed to be in contradiction with other experimental limits, recent

theoretical work has shown that it may be compatible with a very low mass

WIMP (mχ ∼ 10 GeV) which would evade the bounds set by other experiments

(Petriello & Zurek, 2008; Savage et al., 2009a,b). However, the mass and nucleon

scattering cross section of such a WIMP is outside of the conventional region of

parameter space predicted by SUSY. Ultimately the confirmation of the DAMA

result can only be achieved by the measurement of the compatible signature in

an independent experiment. Future direct detection experiments such as Super-

CDMS (Schnee et al., 2005) and XENON100 (Aprile & XENON Collaboration,

2010) should have a sensitivity to spin-independent cross sections in the regime

10−9–10−10 pb and should significantly clarify the experimental picture.
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Figure 1.8 Comparison of upper limits on the WIMP-nucleon spin-independent

cross section as a function of WIMP mass. The solid black line, dashed orange

line, and purple crosses show the limits obtained by the CDMS-II (CDMS II Col-

laboration, 2010), XENON10 (Aprile et al., 2009), and ZEPLIN III (Lebedenko

et al., 2009) experiments respectively. Shaded regions indicate the allowed param-

eter space for certain SUSY models. Figure taken from CDMS II Collaboration

(2010).
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1.4.3 Indirect Detection

The indirect detection of DM can potentially be achieved by searching for any

of the secondary particles produced by WIMP annihilations, interactions, or de-

cays. If they are Majorana particles, WIMPs can annihilate into fermion and

gauge boson pairs that hadronize into showers of secondary particles. The long-

lived charged secondaries (electrons, positrons, protons, antiprotons, etc.) diffuse

through galactic magnetic fields from the production site to the Solar System.

Neutral secondaries such as gamma rays and neutrinos are unperturbed by mag-

netic fields and thus can be mapped back to the source of annihilation whether in

the galaxy or extragalactic. Enhanced neutrino fluxes can also be produced in the

cores of the Sun and Earth due to capture of WIMPs in the gravitational wells

of these bodies by the WIMP-nucleon scattering (Bergström et al., 1998a). By

studying the fluxes of these cosmic-ray species at Earth, the signatures consistent

with DM could be identified.

The detection of several unusual features in the high energy (E > 10 GeV)

cosmic-ray electron and positron spectra has recently stimulated the debate about

a possible DM origin. The PAMELA satellite (Picozza et al., 2007) reported a

measurement of the positron fraction (e+/(e+ + e−)) that shows a rapid rise be-

tween 10 GeV and 100 GeV (Adriani et al., 2009a) which is larger than predicted

by models for cosmic-ray propagation (see Figure 1.9). A harder than expected

total electron spectrum (e+ + e−) was also reported by the Fermi-LAT (Abdo

et al., 2009a) in the 100–700 GeV regime and in the 300 GeV–1 TeV regime by

H.E.S.S. (Aharonian et al., 2008a, 2009a). Taken together these measurements

imply a new source of high energy electrons and positrons that could arise from

either astrophysical origin or from a more exotic production mechanism such as

DM annihilation. A conventional astrophysical explanation for these measure-
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ments is particle acceleration by one or more nearby sources such as pulsars

(Hooper et al., 2009; Yüksel et al., 2009). A WIMP interpretation (e.g. the neu-

tralino or KK particle) is disfavored by the antiproton-to-proton ratio measured

by PAMELA (Adriani et al., 2009b) as well as by the large boost factors needed

for a WIMP particle with a standard weak scale annihilation cross section. Stim-

ulated by these experimental observations various alternative DM particle models

that annihilate preferentially to leptons and have cross sections enhanced by the

Sommerfeld mechanism have been proposed (Cirelli et al., 2009; Cholis et al.,

2009).

Among the secondary particles produced in WIMP annihilations, gamma-rays

have a unique capability to relate WIMP as a particle to the astrophysical DM

problem. Because gamma-rays produced in WIMP annihilations point back to

the source of annihilation, astrophysical foregrounds can be significantly reduced

by searching for signals in the direction of regions with a high density of DM. The

rate of WIMP annihilations is proportional to the square of the local WIMP den-

sity and thus the annihilation signal is expected to be highly concentrated in the

cores of DM halos. The gamma-ray spectrum of the WIMP self-annihilation also

has several distinctive features: strong spectral curvature, a sharp break at the

WIMP mass, and a possible enhancement at the spectral endpoint due to anni-

hilations to mono-energetic gamma-rays as well as internal brehmsstrahlung pro-

cesses (see Chapter 4 for further discussion). The sensitivity, spatial resolution,

and energy resolution of the current gamma-ray ground-based observatories such

as VERITAS (Weekes et al., 2002) and H.E.S.S. (Hofmann & H. E. S. S. Collab-

oration, 2003) and the space-based Fermi-LAT (Atwood et al., 2009) make them

ideally suited to search for these features. The detection of multiple gamma-ray

sources with the spectral characteristics of the WIMP would allow a conventional

astrophysical origin to be conclusively ruled out.
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Figure 1.9 Top: Total cosmic-ray electron flux (e++e−) as a function of energy as

measured by Fermi-LAT (Abdo et al., 2009a), H.E.S.S. (Aharonian et al., 2008a,

2009a), and various other experiments. The three lines show diffusive cosmic-ray

propagation models generated with GALPROP (Moskalenko & Strong, 1998)

using different input parameters for the cosmic-ray injection spectrum. Figure

taken from Grasso et al. (2009). Bottom: Positron fraction (e+/(e+ + e−))

measured by the PAMELA satellite (Adriani et al., 2009a). The three lines

correspond to the same theoretical models shown in the top figure. Figure taken

from Grasso et al. (2009).
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The most promising nearby targets for DM searches include the Galactic Cen-

ter, local group galaxies, dwarf spheroidal galaxies (dSphs) of the Milky Way, and

the cores of galaxy clusters. The cores of galactic systems are typically also the

regions with the highest baryonic content, and thus an important consideration

is the possibility of confusion with standard astrophysical sources. Baryons may

also play a significant role in shaping the present DM density in the central regions

of these objects making prediction of self-annihilation fluxes uncertain.

The Galactic Center (GC) has long been considered an attractive candidate

for indirect DM searches (Berezinsky et al., 2006; Bergström et al., 1998b; Bertone

et al., 2002) due to its proximity and the large central DM density inferred from

stellar kinematic studies (Klypin et al., 2002; Battaglia et al., 2005; Xue et al.,

2008). However the detection of DM self-annihilation is complicated by the pres-

ence of many astrophysical sources in this region. Observations by H.E.S.S. lead

to the detection of a VHE source (HESS J1745-290) coincident with the GC

(Aharonian et al., 2004) with a spectrum that can be described by a featureless

powerlaw up to 7 TeV with an index Γ ≃ 2.2. This spectrum is incompatible

with both neutralino and KK emission models (Aharonian et al., 2006). Analy-

ses that have treated the point-source in the GC as an astrophysical power-law

background have placed limits on the thermally average self-annihilation cross

section of ∼ 10−23 cm3 s−1 for a 1 TeV WIMP. A significant systematic involved

in deriving these limits is the extrapolation of the MW halo density profile down

to very small scales (< 10 pc) where large uncertainties exist due to both the

limited resolution of CDM simulations and the largely unknown role of baryonic

matter.

Although the robust predictions of the WIMP gamma-ray luminosity are chal-

lenging, systems with a large central baryonic content such as the cores of glob-
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ular clusters and galaxies are attractive targets for DM searches. After the GC,

the closest galactic nuclei of mass comparable to the Milky Way are the local

group galaxies M31, M32, and M33 which are ∼ 100 times more distant than

the GC. The globular clusters are of a comparable distance to the GC but are

much less massive. Both classes of systems however are interesting in the con-

text of scenarios in which a high concentration of baryonic matter in the cores

played a significant role in enhancing the central DM density. VHE observations

of M31/M32 were previously reported by HEGRA (Aharonian et al., 2003), the

Whipple 10m (Wood et al., 2008), and CELESTE (Lavalle et al., 2006).

Dwarf spheroidal galaxies have been extensively studied as potential DM an-

nihilation gamma-ray sources (Baltz et al., 2000; Tyler, 2002; Strigari et al., 2007;

Bergström & Hooper, 2006; Colafrancesco et al., 2007) due to their large observed

mass-to-light ratios (M/L). The shape of the DM density profiles in these systems

can be directly constrained by studying their stellar kinematics (Strigari et al.,

2007, 2008b; Martinez et al., 2009). Astrophysical backgrounds in these systems

are expected to be negligible due to their relatively low baryonic content and lack

of active star formation. Limits on the gamma-ray flux from dwarf galaxies have

been reported by STACEE (Driscoll et al., 2008), MAGIC (Albert et al., 2008;

Aliu et al., 2009), Whipple 10m (Wood et al., 2008), H.E.S.S. (Aharonian et al.,

2008b, 2009b), and the Fermi-LAT (Abdo et al., 2010a; Scott et al., 2010).

This thesis presents the results of a search for gamma-ray emission from ten

targets observed by VERITAS, and the work reported here has served as the

basis for the VERITAS publication (Acciari et al., 2010). The targets selected

for observations include five dwarf galaxies, two local group galaxies, and three

globular clusters. Chapter 2 describes the VERITAS instrument and outlines

contribution of the author to the development and construction of the VERITAS
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observatory. Chapter 3 describes the procedures developed and used to analyze

the data. Some of the methods explained have been significantly advanced or

adapted to VHE gamma-ray astronomy for the first time. Chapter 4 discusses

the general characteristics of the DM annihilation signal and the relevant con-

siderations for estimating the DM annihilation flux from a given astrophysical

source. Chapter 5 presents the core results of this work, the data analysis and

the constraints on the WIMP particle that were inferred from the VERITAS ob-

servations. The summary of the place of this work in the broad studies of the

nature of DM is given in the conclusion, Chapter 6.
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CHAPTER 2

VERITAS Instrument

The self-annihilation of WIMP particles is generically expected to produce fluxes

of gamma-rays with a broadband spectrum extending up to the rest mass of

the WIMP. For the preferred WIMP mass range (10 GeV–100 TeV), the typical

energy density spectrum peaks in the 1–100 GeV regime. The observation of

astrophysical gamma-ray sources in this energy regime is accomplished by utiliz-

ing two types of instruments: space-based satellites and ground-based imaging

atmospheric Cherenkov telescopes (IACTs).

Space-based instruments such as the former EGRET (Thompson et al., 1995)

and the currently operating Fermi-LAT (Atwood et al., 2009) detect gamma-rays

directly by tracking the conversion of the gamma-ray to an electron-positron pair

and measuring the electromagnetic energy deposited in a calorimeter. The size

of space-based instruments is significantly limited by the feasibility and cost of

launching a large detector into orbit and thus they have relatively small collect-

ing areas (∼ m2). This limitation sets a practical upper limit for observations of

gamma-ray photons to . 100 GeV due to rapidly falling fluxes of astrophysical

gamma-rays with increasing energy. The small collection area of these instru-

ments is partially offset by their large field-of-view (∼ 2 steradians for Fermi-

LAT) and high duty cycle.

The IACTs study gamma-rays with energy larger than a few 10s of GeV from

the ground by imaging the Cherenkov light emitted by the electromagnetic (EM)
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cascades originating when gamma-ray photons interact with the Earth’s atmo-

sphere. The EM cascade proceeds through the alternating sequence of production

of electron-positron pairs and bremsstrahlung radiation. The energy of the sec-

ondary particles is rapidly reduced by these mechanisms with a simultaneous

rapid increase of the number of particles in the cascade. The size of the cascade

grows until the particle energies fall below the threshold at which the dominant

mechanism of energy losses becomes ionization (∼ 83 MeV). The height at which

the the number of particles in the cascade is largest (shower maximum) depends

logarithmically on the primary gamma-ray energy and for a 300 GeV photon oc-

curs at ∼ 10 km. Charged particles in the EM cascade (electrons and positrons)

polarize the atmosphere and emit Cherenkov radiation polarization waves if their

velocity exceeds the speed of light in the medium. Cherenkov radiation is a cylin-

drical wave emitted at the angle θ = cos−1(1/(nβ)) with respect to the trajectory

of the particle, where n is the index of refraction of the atmosphere and β = v/c.

The Cherenkov light has an intrinsic differential spectrum proportional to dλ/λ2.

By the time these photons reach the observation level on the ground, the photons

with the wavelength below 280 nm are absorbed by the atmosphere. Therefore

the observable Cherenkov light is broadband and peaks at ∼ 330 nm.

A pool of Cherenkov light centered on the trajectory of the primary gamma-

ray is formed by the sum of the Cherenkov light emitted by the secondary charged

particles in the cascade. The Cherenkov angle depends on the atmospheric den-

sity and varies from nearly 0◦ at high alitudes (above 30–40 km) to ∼ 1.2◦ at

the observation level. Because the Cherenkov light from an EM cascade is emit-

ted by particles distributed over the cascade trajectory, the interplay between

the changing Cherenkov angle and the height of the emission distributes the

Cherenkov light over the pool with a characteristic radius of 130 m. This area of

∼ 105 m2 rather than the aperture of the detector determines the effective col-
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lecting area of IACTs and allows efficient detection of astrophysical gamma-ray

photons with energies above a few tens of GeVs.

The Whipple 10m telescope (Cawley et al., 1990) pioneered the imaging atmo-

spheric Cherenkov technique and reported the first detection of a VHE gamma-

ray source, the Crab Nebula (Weekes et al., 1989). This has been accomplished

through the development of concept of imaging Cherenkov light. Cherenkov light

from the cascade arrives at the observation level nearly simultaneously with the

time spread of ∼ 6 ns. The short duration of the light shower is used to detect

the faint Cherenkov flashes in the atmosphere against the night sky background

(Galbraith & Jelley, 1953). A second innovation, pioneered by the HEGRA in-

strument (Pühlhofer et al., 2003), was the development of arrays of IACTs that

could stereoscopically observe the same event. The overwhelming background of

the imaging atmospheric Cherenkov technique are the isotropic cosmic rays that

generate similar EM cascades and Cherenkov light showers. The stereoscopic in-

formation obtained by observation with multiple telescopes significantly increases

the gamma-ray angular resolution and improves the background rejection capa-

bilities of this technique.

The energy threshold of currently operating IACT arrays depends on the

aperture of the telescopes and for 12m class instruments is in the regime 80–

150 GeV. This threshold is determined by the faintest light showers that can be

effectively reconstructed against the ambient night sky fluctuations requiring ∼
50–100 detected photons per event. The current generation of IACT observatories

have achieved a gamma-ray flux sensitivity level of a fraction of 1% of the Crab

Nebula flux in the regime around 1 TeV where the highest sensitivity is achieved.

VERITAS is an array of four imaging atmospheric Cherenkov telescopes

(IACTs) located at the base camp of the Fred Lawrence Whipple Observatory

37



(FLWO) in southern Arizona (1268 m above sea level, N31◦400’30”, W110◦57’07”;

Weekes et al. 2002). Single telescope operations began in early 2005 with the com-

pletion of the first telescope (T1). The second and third telescopes (T2 and T3)

were completed in 2006 and full four telescope operations began in April 2007.

A significant upgrade to the array was undertaken in Summer 2009 with the re-

location of the first telescope T1. Figure 2.1 illustrates the former and current

array configurations. This thesis is based on the data collected during the period

2007–2010 when the telescope operated as a full array with both configurations.

This chapter describes the main hardware and online software components of the

VERITAS observatory comprising the telescope optics (Section 2.1), camera (Sec-

tion 2.2), trigger system (Section 2.3), and data acquisition (DAQ) (Section 2.4).

2.1 Telescope Optics

Each VERITAS telescope has a 12 meter diameter primary reflector that utilizes

the segmented Davies-Cotton (DC) optical design (Davies & Cotton, 1957). The

reflector consists of a tubular steel optical support structure (OSS) onto which

342 identical hexagonal mirror facets are mounted having a total mirror area of ∼
106 m2. Each mirror facet has an edge-to-edge dimension of 61 cm and a spherical

figure with a radius of curvature of 24 m. Mirrors are composed of slumped,

ground, and polished glass with an aluminum coating and an anodized aluminum

overcoating that achieves 85% reflectance between 280 nm and 450 nm and 92%

reflectance at 320 nm (Roache et al., 2008) (see Figure 2.2). Measurements of

mirror reflectivity have shown an average ∼ 3% loss of mirror reflectivity per

year due to weathering. In order to maintain high mirror reflectivity, mirrors are

continuously stripped and recoated at an on-site facility at the FLWO at a rate

of ∼ 350 mirrors (one telescope) per year.
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The VERITAS optical system (OS) is designed to achieve an optical point-

spread-function (PSF) that at the edge of the 3.5 degree field-of-view (FoV) is

approximately contained within the angular size of the camera pixels (0.15◦). The

finite size of the ideal VERITAS PSF arises from the contribution of both facet

and global aberrations. Facet aberrations which are dominated by astigmatism

scale with the inverse f-number of the individual facets (ffacet/39 for VERITAS)

and can in principle be reduced by decreasing the facet size. Global aberrations

dominated by coma scale with the inverse square of the f-number of the compos-

ite reflector (f/1.0 for VERITAS). The on-axis PSF FWHM (50% containment

diameter) is primarily determined by the contribution of facet aberrations. The

off-axis performance is dominated by global aberrations and rapidly degrades

with increasing field angle (ψ) due to the effects of coma (∼ ψ) and astigmatism

(∼ ψ2). The ideal PSF of the VERITAS OS has a FWHM of 0.037◦ and 0.088◦

for a point-source at field angles of 0◦ and 1◦ respectively (Fegan & Vassiliev,

2005).

The accurate alignment of the individual mirror facets is critical to achieving

a PSF approaching the ideal VERITAS PSF. Due to various non-idealities in

the VERITAS OS, the FWHM of the VERITAS PSF is generally larger than its

theoretical value with misalignment of individual mirror facets making the dom-

inant contribution to the PSF spotsize (Fegan & Vassiliev, 2005). Misalignment

of mirrors is caused by both limitations in the alignment technique and gravita-

tional deformations of the OSS which change as the telescopes slew in elevation

and cause mirrors to shift out of alignment. The mirror alignment is therefore

optimized to achieve the best PSF spotsize at the elevation of ∼ 65◦ where most

observations are made.

Prior to 2009, the alignment of the VERITAS mirrors was performed with
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a laser-based alignment tool placed at the 2F point of the reflector. Mirrors

were adjusted until the return beam was aligned with the outgoing beam. This

technique is limited due to a varying distance from individual facets to the 2F

point of the reflector and an average on-axis FWHM of ∼ 0.08◦ at 65◦ elevation

was achieved which is more than two times the ideal PSF value (0.037◦). An im-

proved alignment technique was deployed in 2009 that uses a reflector-facing wide

field-of-view camera mounted in the telescope focal plane (McCann et al., 2010).

Images of the individual facets of the primary reflector are taken while scanning

around a bright star. Analysis of these images are used to calculate a set of

adjustments to be applied to individual mirror facets. The VERITAS telescopes

do not have an active mirror adjustment mechanism and are adjusted manually

once every observing season. Application of the new mirror alignment technique

to the VERITAS telescopes improved the optical PSF by ∼ 30% achieving an

on-axis FWHM of ∼ 0.06◦ at 65◦ elevation (see Figure 2.2).

2.2 Camera

The focal plane of each telescope is instrumented with 499 Photonis XP 2970/02

photomultiplier tubes (PMTs) with a physical diameter of 2.86 cm and packed

with an angular separation of 0.15◦ (see Figure 2.3). The PMTs have a ten-stage

dynode chain with a nominal gain of 2 × 105 at 850 V. The PMT photocathode

achieves a peak quantum efficiency of ∼ 25% at 320 nm that approximately coin-

cides with the peak of the Cherenkov light spectrum from atmospheric cascades

detected at the ground level. The signal from each PMT anode is AC coupled and

amplified by a low-noise preamplifier integrated into the PMT base with a gain of

6.66 and a bandwidth of 300 MHz. Signals from the preamplifier are transmitted

to the trigger and DAQ systems (Sections 2.3 and 2.4) via a 45 m coaxial cable
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Figure 2.2 Left: Average mirror reflectivity of the four VERITAS telescopes as

a function of wavelength. Error bars indicate the dispersion of the reflectivity of

individual facets. Figure taken from Roache et al. (2008). Right: On-axis image

of a star measured at ∼ 70◦ elevation after mirrors were aligned with the new

mirror alignment technique. The black circle indicates the size of the VERITAS

PMT (0.15◦). Figure taken from McCann et al. (2010).
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Figure 2.3 An image of the 499-pixel VERITAS camera with light concentrator

plate removed.

(RG-59) which results in a signal dispersion and reduction of its peak amplitude

by ∼ 25%. Voltage is supplied to each PMT by a commercial system consisting of

two HV crates (CAEN Model SY1527 and SY2527) located in the control trailer

of each telescope. The DC component from each PMT anode is fed into a current

monitoring system with a resolution of 0.5 µA and a 10 Hz readout rate. The

PMT operating currents are caused by night sky background and are typically in

the range 3–12 µA. PMTs are automatically disabled if the instantaneous current

measurement exceeds 40 µA or 30 µA for greater than 4 seconds. An array of

light concentrators mounted on a flat plate is installed in the camera focal plane.

The light concentrators capture a fraction of the light that would otherwise be

lost in the dead space between PMTs and improve stray light control at large

incident angles. Further details of the telescope optics and camera systems can

be found in Holder et al. (2006).
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2.3 Trigger System

VERITAS employs a three level trigger system to detect the short-duration

Cherenkov flashes generated by cosmic- and gamma-ray-initiated cascades while

suppressing events initiated by the night-sky background (NSB) and local muons.

The efficient operation of the trigger system is critical for the detection of low-

energy events (E . 150 GeV) that are typically dim and difficult to distinguish

from noise fluctuations. In the following sections the three levels of the trigger

system (L1, L2, and L3) operating at the level of the pixel, camera, and telescope

array respectively are described. The inputs to the trigger system are the analog

signals from the camera PMTs. A second copy of these analog signals is also fed

to the DAQ system (Section 2.4). Events satisfying all trigger criteria result in

the production of an L3 trigger that initiates a readout by the DAQ system.

2.3.1 Level 1 Trigger

The L1 trigger operates at the pixel level and uses a constant fraction discrimi-

nator (CFD) to generate a logic pulse when the preamplified output of a PMT

exceeds a programmable threshold. This system was designed and 2500 CFD

boards were fabricated at UCLA and their operation is maintained at the VERI-

TAS observatory by the UCLA group. A schematic of the CFD circuit is shown in

Figure 2.4. Logic pulses generated by the CFDs in each telescope are the input to

the L2 trigger system (Section 2.3.2) and have a programmable width of 4–25 ns.

An important design characteristic of the CFD is the timing jitter which sets a

lower limit on the width of the resolving time window that can efficiently identify

CFD pulses coincident between neighboring pixels. The conventional CFD design

minimizes the timing jitter of the CFD trigger pulse by using two discriminators:

threshold (TD) and zero-crossing (ZCD). A pulse that triggers the CFD must
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Figure 2.4 Schematic of the CFD (L1) trigger system. Figure taken from Hall

et al. (2003).

trigger the ZCD while exceeding the minimum amplitude set by the TD. The

circuit used to form the ZCD trigger sums an inverted copy of the input pulse

delayed by 2.5 ns with a copy attenuated by the CFD fraction (0.4) and fires

when the sum of these signals crosses the zero point. For a fixed pulse profile, in

the absence of the NSB fluctuations this circuit generates a CFD trigger at the

time independent of the pulse amplitude.

To adapt the conventional CFD to operation in the presence of the NSB fluc-

tuations an additional circuit, the rate-feedback (RFB) loop, has been developed

and implemented. The RFB circuit is a novel feature of the VERITAS CFD and

dynamically adjusts the ZCD offset in response to changes in the ZCD trigger

rate determined by the NSB. Three benefits are delivered by this circuit. First

it dynamically minimizes the timing jitter caused by NSB, and in its absence,

it functions as the ideal CFD design. Secondly, the RFB circuit stabilizes the

VERITAS trigger rate against variations in the NSB rate caused by the different
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night sky brightness levels in galactic or extragalactic fields or during observa-

tions conducted with partial moonlight. The strength of the RFB response is

controlled by a programmable coupling constant, the RFB setting, that can be

defined in the range 0–250 mV/MHz and responds to changes in the ZCD trigger

rate on a time scale of ∼ 1 s. The third benefit is due to additional filtering

capability which is brought by the CFD design allowing suppression of the CFD

trigger based on the pulse time characteristics. Pulses that significantly exceed

the CFD threshold always trigger the CFD regardless of their time profile. How-

ever pulses which are near the CFD threshold are rejected if the risetime of the

pulse is too fast causing the amplitude of the pulse to fall below the CFD TD

threshold before the ZCD has fired. Because the Cherenkov pulse has a time

profile which is intrinsically broader than the narrowest pulses formed by single

NSB photons, this criteria rejects a fraction of NSB pulses which exceed the CFD

threshold while allowing a fraction of Cherenkov-like pulses to pass the trigger

requirements.

Figure 2.5 illustrates the dependence of the total array trigger rate (L3 rate) on

the CFD threshold setting for four values of the RFB setting. The total trigger

rate in this figure is the sum of two contributions: a slowly rising component

from cosmic-ray triggers and a steep component at low CFD thresholds from

NSB triggers. Increasing the RFB setting effectively shifts the NSB component

to lower threshold values without significantly impacting the rate of cosmic-ray

triggers. However if RFB setting is excessively large the suppression of the cosmic-

rays will occur. The RFB setting of 52 mV/MHz was adopted for full array

operation in 2007 as a compromise between operation threshold and cosmic-ray

trigger efficiency. The other standard operating parameters of the L1 trigger

system are a threshold of 50 mV and a CFD output width of 10 ns. Investigation

of the CFD performance and trigger efficiency for small cosmic-ray events has
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Figure taken from Wood et al. (2007).
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been conducted and was discussed in Wood et al. (2007).

2.3.2 Level 2 Trigger

The L2 trigger operates at the camera level and requires a time coincidence of

CFD triggers from at least 3 or 4 adjacent pixels, hence the name pattern selec-

tion trigger (PST) adopted for L2. CFD triggers initiated by NSB are randomly

distributed in the camera, and the PST can therefore significantly suppress ran-

dom triggers relative to cosmic rays that typically trigger a group of adjacent

pixels. The two main components of the L2 trigger are an ECL signal splitter

and a set of 19 PST modules housed in a CAMAC crate. CFD triggers from 469

of the 499 pixels are fed to the custom-built signal splitter that organizes them

into 19 overlapping patches of 59 pixels. The signals from each patch are fed

to 19 corresponding PST modules that use a lookup table to search for patterns

of adjacent pixels on the time scale of ∼ 100 ns. The PST modules can be pro-

grammed to search for groups of either 3 or 4 pixels. An OR module combines the

trigger signals from the 19 PST modules to form a single L2 trigger signal which

is sent to the L3 trigger (Section 2.3.3). Further discussion of the L2 system

developed at Leeds University, UK can be found in Bradbury & Rose (2002).

2.3.3 Level 3 Trigger

The L3 trigger operates at the the telescope array level by requiring time coinci-

dences between the L2 triggers generated by the individual telescopes. In addition

to rejecting a fraction of NSB-initiated L2 triggers, the L3 trigger significantly

suppresses the rate of triggers from Cherenkov light generated by single particles,

mostly muons. Muons that can trigger the L2 typically produce a bright compact

image in a single telescope and thus can be efficiently rejected by requiring a time
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coincidence of two or more telescope triggers. As the only array-level component

of the trigger system, the L3 trigger is also responsible for measuring the total

instrument deadtime and monitoring the telescope (L2) trigger rates.

A schematic of the L3 trigger system is shown in Figure 2.6. Trigger signals

are transmitted over the ∼80 m distance between the L3 trigger system location

and the telescopes by the the Digital Asynchronous Transmission (DAT) modules

(White et al., 2008). Each telescope has a receiver/tranceiver DAT module pair

linked to a corresponding module pair at the L3 trigger by optical fibre. The

conversion of electrical signals to optical signals is achieved using the Infineon

1.25 Gbit/s parallel optical link consisting of a 12 channel, 850 nm VCSEL driven

transmitter and PIN diode-array receiver.

The L3 trigger system was developed by UCLA and McGill University, and

the author of this thesis was significantly involved in its development. The main

hardware components of the L3 trigger are housed in a single 6U VME crate

and consist of two pulse delay modules (PDMs) that apply programmable delays

to the incoming and outgoing trigger signals, the subarray-trigger (SAT) board

responsible for the array/subarray trigger decision logic, a commercial GPS clock

(Symmetricom TTM637), and a VME CPU controller (GE Fanuc VMIVME-

7807). The software component of the L3 trigger is a persistent multi-threaded

daemon process that runs on the L3 VME CPU and is primarily responsible for

configuring the L3 VME modules prior to each run and updating the delay set-

tings of the PDMs. The L3 daemon receives commands from the array control

program via the CORBA protocol. The L3 CORBA interface provides meth-

ods for starting new runs, managing existing runs, and obtaining realtime run

diagnostics in the form of trigger rates and deadtimes. L3 diagnostic data is

simultaneously logged to the VERITAS database every second. Data associated
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with each trigger are transmitted to the Harvester (Section 2.4.3) via a gigabit

ethernet connection.

In order to form time coincidences between the L2 triggers, delays are applied

by the frontend PDM to the incoming trigger signals from each telescope to

bring them into time alignment. Each PDM has 32 independently programmable

digital delay lines with a 2 ns step size and a 100 ns to 16 µs range. The PDM

delays correct for both differences in propagation time between each telescope

and the L3 trigger location (e.g. due to differences in the length of DAT fibres)

and the expected delay in the arrival time of the Cherenkov shower wavefront

due to varying geometrical orientation with respect to the VERITAS array. The

delay applied to the L2 trigger from telescope i is

∆ti = µi + µs + δi,

where µi is a fixed propagation delay, µs is a positive constant that ensures the

total delay is larger than the intrinsic PDM channel latency (96 ns), and δi is the

time-varying geometrical shower delay given by

δi = − (Ri −R0) · e/c = − (xi sin θ sinφ+ yi sin θ cosφ+ zi cos θ) /c,

where e = (sin θ sinφ, sin θ cosφ, cos θ) is the current array pointing, Ri −R0 =

(xi, yi, zi) is the position of telescope i with respect to array reference point R0,

and c is the speed of light. After frontend delays have been applied, a residual

timing spread with an RMS of ∼ 10 ns remains (see Figure 2.7) due to both the

curvature of the Cherenkov shower wavefront and timing jitter in the formation

of the L2 trigger. For the outgoing trigger signals, a corresponding compensating

delay is applied,

∆ti = µs − δi. (2.1)

This delay ensures a fixed roundtrip time between the generation of the L2 to
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the arrival of the L3 trigger at the telescope DAQ. Delays for different telescopes

are updated every five seconds using the current array pointing obtained from

the positioner database records.

After frontend delays are applied, the delayed L2 triggers are passed to the

SAT board that identifies groups of coincident triggers. The SAT board converts

the arrival time of each L2 trigger into a digital timestamp via a time-to-digital

converter (TDC) with a time resolution of 1.25 ns. The arrival timestamps are

then searched for one or more telescope trigger patterns in the FPGA within

a programmable coincidence window of 1.25–125 ns. The set of valid telescope

trigger patterns is defined by a programmable trigger lookup table and can be

used to include or exclude specific combinations of telescopes. The default L3

trigger configuration requires any combination of at least two telescopes (total

telescope multiplicity of two). When a matching trigger pattern is found, an

L3 trigger pulse is generated for all telescopes in the array. For telescopes that

participated in the trigger decision, the timing edge of this pulse is determined

by the arrival time of the corresponding L2 trigger ensuring a fixed propagation

time through the L3 trigger system. In addition to the L3 trigger, a 48-bit event

mask is transmitted asynchronously to each telescope over three serial data lines.

Each event mask contains an 8-bit event type code and a 32-bit event number

that uniquely identifies the event within the run. Information related to each

event including L2 trigger TDC times, deadtime scalers, GPS timestamp, and

the unique event number is saved to a FIFO buffer with a depth of 1024 events.

Event records in the SAT FIFO are read out asynchronously by the L3 daemon

at a rate of ∼ 10 Hz and sent to the Harvester where they are later merged with

the event data from the telescopes.

In addition to Cherenkov-shower-initiated triggers identified with an event

52



−60 −40 −20 0 20 40 60
10

0

10
1

10
2

10
3

10
4

L2 arrival time difference T1−Tn [ns]

E
v
e

n
ts

 

 

∆ t Mean/RMS [ns]

T2:   −0.86/7.44
T3:   +2.07/8.04
T4:   +1.52/10.22

T2

T3

T4

0 2 4 6 8 10 12 14 16 18 20
5

6

7

8

9

10

11

12

13

14

15

Run time [min]

D
e

a
d

ti
m

e
 [

%
]

 

 

Effective

T1

T2

T3

T4

Figure 2.7 Left: Distribution of L2 arrival time differences relative to T1 for

run 51758 after frontend PDM delays have been applied. Right: Deadtime as a

function of run time for run 51758 as measured by the L3 deadtime scalers. The

solid black line shows the total deadtime. Blue, red, green, and purple lines show

the contribution to the total deadtime from each of the telescope DAQ systems.

type code, the L3 system also generates self-triggers at the rate of 1 Hz which are

used to calibrate the channels in the absence of Cherenkov events. These events

are used to measure the Flash Analog-to-Digital Converter (FADC) pedestal

offset and the variance due to fluctuations in the NSB level in each channel.

These triggers or pedestal events are generated with a special event type code.

After receiving an L3 trigger, each telescope DAQ stops and reads out a

∼ 50 ns portion of the FADC buffer. During readout, the DAQ inhibits the L3

trigger by raising a Busy level which is sent via the DATs. The SAT also self-

vetos for 10 µs after an event decision, in order to allow for L3 signal propagation

to the telescopes. The SAT board monitors the total deadtime and the deadtime

contribution of each telescope with a 10 MHz reference clock and a set of onboard

32-bit scalers (see Figure 2.7). The array deadtime is primarily determined by
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the telescope DAQ readout time of ∼ 400 µs. For small deadtimes, the deadtime

scales linearly with the L3 rate and is approximately 10% for an L3 trigger rate

of ∼ 220 Hz. A detailed description of the L3 trigger is presented in Weinstein

(2008).

2.4 Data Acquisition System

The VERITAS DAQ system is responsible for digitizing the analog signals from

the camera pixels and saving these data to disk in the VERITAS Bank For-

mat (VBF). A schematic of the VERITAS DAQ system is shown in Figure 2.8.

The core of the DAQ system are the Flash Analog-to-Digital Converter (FADC)

boards that perform the digitization of the analog signals (Section 2.4.1). The

acquisition of an event is initiated by the L3 trigger distributed to each telescope

via the DATs. When the L3 trigger is received, the telescope data acquisition

software reads out a portion of the FADC buffer and assembles the data into a

telescope event. Data from all array subsystems are finally assembled by the Har-

vester (Section 2.4.3) and saved to disk. The VERITAS DAQ system is described

in Hays (2008).

2.4.1 FADC Boards

The FADC system is the frontend of the VERITAS DAQ chain and consists

of a set of 50 10-channel FADC boards distributed across four 9U VME crates

(Rebillot et al., 2003). Each FADC channel digitizes the analog signal from a

single camera pixel. The input signal to each FADC channel is fanned out to

the CFD (amplified by 6) and the high gain FADC channel (amplified by 7.25).

Each FADC channel has an 8-bit dynamic range (0–255 digital counts (dcs) with
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2.4.2 Telescope DAQ

The VME DAQ system is responsible for reading out the FADC memory, as-

sembling the data into telescope events, and sending this data to the Harvester

over gigabit ethernet. The hardware consists of five VME crates: four FADC

crates containing 12 or 13 FADC boards and a clock trigger board (CTB) and

one auxiliary crate containing a GPS clock and the master CTB. Each crate also

houses a VME CPU controller that runs an instance of the VME Data Acquisi-

tion (VDAQ) software. When an L3 trigger is generated, it is first passed to the

master CTB from which it is fanned out to the CTBs of the individual crates.

Readout of the FADCs is initiated when an L3 trigger is received. After an L3

trigger is received, VDAQ reads out a portion of the FADC circular buffer mem-

ory which is determined by a programmable FADC lookback time and window

size. In addition to the digitized FADC trace values, the CFD trigger and HiLo

gain switch bits are also registered. During readout, a Busy level is transmitted

to the DAQ auxiliary crate where it is combined with the Busy levels of the other

FADC crates and transmitted to the L3 trigger. This Busy level ensures that

the L3 trigger remains inhibited during FADC readout which lasts ∼ 400 µs.

Each VDAQ process collects the partial event data until its buffer size grows to

∼ 2000 events. The event buffer is then transferred to the Event Builder over

the Scalable Coherent Interface (SCI) link. The Event Builder is responsible for

assembling these data into telescope events and sending them to the Harvester

over a gigabit ethernet connection.

2.4.3 Harvester

The array-level data acquisition software, Harvester, runs on a dedicated central

server and is responsible for collecting event data from the individual telescope
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DAQ systems and the L3 trigger system. Event data are combined into array

events by matching the unique event numbers generated by the L3 trigger. Data is

saved to a RAID archive in the VERITAS Bank Format (VBF). The VBF format

incorporates an FADC trace compression algorithm that reduces the output file

sizes by a factor of ∼2. A typical VBF file for a 20 minute run taken with an L3

trigger rate of 200–250 Hz is 4–6 GB in size. The raw data in the form of VBF

files is analyzed by the VERITAS analysis software (Chapter 3).
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CHAPTER 3

Data Analysis

The analysis of VERITAS data proceeds through several stages beginning with

the output of the data acquisition and ending with a measurement of the intrinsic

properties of a gamma-ray source. The results presented in this thesis were

obtained with the ChiLA analysis and simulation package developed at UCLA.

The primary contributors to this package were Stephen Fegan, Vladimir Vassiliev,

and Matthew Wood. Further discussion on many of the topics presented in this

chapter can be found in referenced collaboration memos.

The analysis progression is shown as a flow diagram in Figure 3.1. The input

to the analysis chain are data files in the VERITAS Bank Format (VBF) produced

by the online data acquisition software (Section 2.4). The core analysis routines

are divided into three stages each of which creates an intermediate data product

that is used as input to the next stage. Intermediate products are saved in the

HDF5 format1, an open-source binary file format designed for large data sets.

A brief outline of the analysis procedure is following. The first two stages

(stage1/stage2 ) perform the reconstruction of individual events. The analysis

begins at the pixel level with the calculation of pedestal (Section 3.1.1) and gain

(Section 3.1.2) calibrations and the determination of the pixel signal from the

integral of the FADC trace (Section 3.1.3). Low signal-to-noise pixels in each

camera image are removed through the image cleaning procedure (Section 3.1.4)

1http://www.hdfgroup.org/HDF5/
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with the remaining pixels forming the telescope image. The cleaned images from

each telescope are parameterized and used to reconstruct the direction, shower

core location, and energy of the gamma-ray primary (Section 3.2). The final

analysis stage (stage3 ) performs source and background modeling on the distri-

butions of event parameters calculated by stage2. A subset of the parameterized

event sample is first selected by applying cuts to the data (Section 3.3) to re-

ject a large fraction of the hadron-initiated atmospheric cascades that constitute

the majority of events. A model for the residual background after cuts is then

constructed and used to test for the presence of a gamma-ray excess in the field

(Section 3.5). Once a source is identified its intrinsic flux and spectral energy

distribution are modeled using gamma-ray Monte Carlo simulations and spectral

reconstruction techniques (Section 3.6).

3.1 Calibration and Image Cleaning

The first step in the analysis chain is to assign to each FADC trace an integral

signal proportional to the number of photons it collected. The trace is a record of

the PMT signal amplitude measured at 2 ns time intervals (samples). A model

for the PMT signal time profile given a distribution of Cherenkov photons µ(t)

is

q(t) = Gǫ

∫ ∞

−∞

f(t− t′)µ(t′)dt′ + b(t) + qped, (3.1)

where G is the pixel gain in digital counts per photoelectron (DC/PE), ǫ is

the pixel photon collection efficiency, f(t) is the single photon response function

(whose area is normalized to one), b(t) is an AC component due to the contri-

bution from night sky background photons and electronics noise, and qped is the

pedestal amplitude. The integral signal is found by integrating q(t) over a time

window (t0, t1). If t1 − t0 is significantly larger than the width of the single PE
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Figure 3.1 Flow diagram for ChiLA analysis package. Data products are shown

as ellipses and data processing routines as rounded rectangles.
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response function, the integral of Equation 3.1 for pixel i is

Qi = Giǫi
si

〈Gǫ〉 +Qped,i, (3.2)

where Qi is the value of the FADC trace integral in DC, Qped,i = qped,i (t1 − t0) is

the pedestal integral, si ≃ 〈Gǫ〉
∫ t1
t0
µi(t

′)dt′ is the camera-normalized pixel signal,

and 〈Gǫ〉 is an average of the photon response (DC per photon) over all pixels

in the camera. It is assumed that 〈b(t)〉 = 0 since the output of the PMT is AC

coupled at the preamplifier. The relative gain correction for the pixel photon

response is denoted as gi = Giǫi/ 〈Gǫ〉. Once the trace integral is known, the

determination of si relies upon the pedestal and gain calibration.

3.1.1 Pedestal Calibration

The pedestal for each FADC channel is determined from the analysis of artificially

triggered pedestal events that are generated with a constant 1 Hz rate by the L3

trigger (Section 2.3.3). Since the typical rate of the Cherenkov events is 150–

250 Hz and the duration of a single flash is 10 ns, the probability of contamination

of the pedestal events with Cherenkov photons is . 10−5. The pedestal amplitude

qped for each FADC channel is determined by averaging the trace over the full

readout window for all pedestal events,

qped,i =
1

Nped∆t

Nped∑

j

Qij, (3.3)

where ∆t is the width of the readout window and Nped is the number of pedestal

events. A typical value for qped,i in VERITAS is in the range 15–20 DC.

The RMS of the pedestal trace integral distribution or pedvar is given by

σped,i(∆t) =

[
1

N

N∑

j=1

(Qij(∆t) − qped,i∆t)
2

]1/2
, (3.4)
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where Qij(∆t) is the value of the pedestal trace integral evaluated with an inte-

gration window ∆t and N is the number of independent measurements of Qij(∆t)

obtained from Nped pedestal events. The pedvar is set by the noise term b(t) in

Equation 3.1 and is the sum of contributions from night sky background (NSB)

photons, the stochastic response of the PMT, and electronics noise. Under normal

operating conditions the contribution from NSB photons dominates since night

sky photons are detected by a PMT on average every ∼ 10 ns. Unlike the pedestal

amplitude, the pedvar can vary significantly between observations due to varia-

tions in the intrinsic brightness of different fields (e.g. galactic vs. extragalactic).

The rotation of the FoV during an observation run (typically 20 minutes) also

introduces a time-dependence to the pedvar which is accounted for by evaluating

the pedvar in three minute intervals. For the VERITAS operation regime with a

typical integration window of 10–20 ns, the pedvar depends nontrivially on the

size of the integration window and is therefore explicitly calculated for all possible

values of this parameter. If the integration window is smaller than the length of

the FADC readout trace, multiple measurements of the pedvar are made from a

single pedestal event by repeatedly shifting the pedestal integration window by

the window size plus an additional shift factor of 3 samples. This choice of shift

factor (6 ns) ensures that the multiple measurements are uncorrelated and also

minimizes the effect the 125 MHz clock noise introduced by the FADC electronics.

3.1.2 Gain Calibration

The pixel gain calibration is measured by recording the short pulse of photons

produced by a UV laser that uniformly illuminates the camera focal plane. The

laser pulse is intended to mimic the time profile of a Cherenkov shower. These

data form a special calibration laser run which is taken nightly and contains
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∼ 3000 laser flashes. For each pixel, two calibration constants are calculated: a

relative gain correction, gi, and an absolute gain, Gi. The relative gain calibra-

tion corrects for differences in light throughput (product of optical efficiency and

absolute gain) across the camera, and the absolute gain calibration converts the

gain equalized signal in DCs into a number in PEs that is independent of the

PMT gain during a particular observation epoch.

The relative gain correction of a pixel is calculated as

gi =
1

N

N∑

j=1

sij
〈sj〉

, (3.5)

where N is the number of laser flashes, sij = Qij − Qped,i is the laser signal

recorded for pixel i and flash j, and 〈sj〉 is the camera-averaged laser signal for

flash j.

The absolute gain of a pixel is the proportionality constant between the inte-

grated signal measured in digital counts (DCs) and the number of photoelectrons

(PEs) captured at the first dynode of the PMT. Its value depends on the PMT

gain, the current to voltage conversion factor in the preamplifier, the attenuation

in the signal cables, the voltage gain factor at the FADC, and the voltage to DC

conversion factor. The photostatistics method (Fegan & Wood, 2008) is a tech-

nique for determining the absolute gain, Gi, from the statistics of laser flashes.

For a fixed laser flash intensity, ni photons, the laser signal, sij, recorded for flash

j should closely follow a Poisson distribution with a mean given by,

〈si〉 = niGiǫi, (3.6)

and variance,

σ2
si

= niǫi
(
G2
i + σ2

q,i

)
+ σ2

ped,i, (3.7)

where σ2
q,i is the variance of the single PE amplitude distribution (which is a

function of the PMT gain) and σ2
ped,i is the pedestal variance. The absolute gain
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Figure 3.2 Left: Simulated p.d.f. for the relative single PE amplitude (x =

ne/〈ne〉) assuming a total gain of 105 (black line), 2× 105 (red line), and 4× 105

(green line). The RMS (σx) of these distributions are 0.484, 0.460, and 0.438.

is thus inferred from the relationship between the mean and variance as,

Gi =
σ2
si
− σ2

ped,i

〈si〉 (1 + α2)
, (3.8)

where αi = σq,i/Gi. To correct for intrinsic variations in flash intensity, the

flash-equalized laser signal, s̃ij = 〈s〉 sij/ 〈sj〉, is used where 〈s〉 is the mean laser

intensity averaged over all flashes.

The variance σ2
q,i of the single PE amplitude is determined by the statistics of

the electron multiplication process in the PMT dynode chain. To estimate σ2
q,i,

a simple model of the VERITAS PMT was developed (Fegan & Wood, 2008)

in which the p.d.f. for secondary emission at each dynode was represented by a

Poisson distribution. Figure 3.2 shows the results of a Monte Carlo simulation

64



generated with this model. This model is applicable for the nominal VERITAS

PMT (Photonis XP2970/02) with ten dynode stages, a gain of 2 × 105, and a

gain-voltage relation g ∝ V 7.4. A value α = 0.46 was found to be compatible

with the single PE PMT simulation and independent of PMT gain to first order.

This value was therefore used in the estimation of absolute gains Gi. It must be

noted, however, that a significant variation in α has been observed in the sample

of VERITAS PMTs (Hanna et al., 2010).

3.1.3 Trace Integration

The FADC trace integral, Qi, is proportional to the number of Cherenkov photons

collected by a pixel and is a summation over the FADC trace amplitudes,

Qi =

jend∑

j=jstart

qij, (3.9)

where qij is the amplitude of sample j and jstart and jend are the indices of the

first and last samples of the integration window respectively. To minimize the

contribution of noise, the trace integration is carried out over a ∼ 10–20 ns

integration window encompassing the majority of the charge from the Cherenkov

pulse. The size of the integration window is determined by the time profile of

the typical Cherenkov pulse which is characterized by a rise time of 3–4 ns and

tail with a fall time of ∼ 10 ns. The pulse arrival time has a dispersion of ∼ 4 ns

which can be mostly attributed to the intrinsic spread of the Cherenkov photon

arrival times, the non-isochronicity of the VERITAS optical system, and the jitter

in the formation of the L2 trigger.

The primary trace integration algorithm used in stage2 defines a dynamic

integration window for each trace on the basis of the pulse arrival time and

a preliminary measurement of the pulse amplitude. Using a dynamic window
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maximizes the signal-to-noise for varying pulse sizes and reduces systematic errors

due to timing jitter. The pulse arrival time, t0, is found by a linear interpolation

between the two samples bracketing the amplitude that is 50% of the maximum

trace amplitude relative to the pedestal. The start and end times of the trace

integration window are pulse height dependent and are defined as

tstart(stot) = t0 − ∆tstart − max
(
αstart log10

( stot
100 DC

)
, 0
)

tend(stot) = tstart + ∆tmin + max
(
αwidth log10

( stot
100 DC

)
, 0
)
,

(3.10)

where ∆tstart is the starting point of the integration window relative to t0, ∆tmin

is the minimum size of the integration window, αstart and αwidth define the rate

of change of the integration start time and window size per decade of pulse

amplitude, and stot is the pedestal-subtracted trace integral for an integration

window encompassing the entire trace. The default values adopted in stage2 for

the four parameters, ∆tstart, ∆tmin, αwidth, and αstart, are given in Table 3.1.

3.1.4 Image Cleaning

The image cleaning procedure removes low signal-to-noise pixels from each tele-

scope event. For each pixel the signal-to-noise ratio is given by σi = (Qi −
Qped,i)/σped,i where σped,i is the pedvar corresponding to the integration window

size that was used to calculate Qi. The ChiLA package uses the regional cleaning

algorithm. Pixels are included in the image if they belong to a contiguous group

of at least N (region size) pixels that all have σi greater than region threshold. In

addition any pixel is automatically included in the image if it is above the iso-

lated threshold. Based on an optimization study with Crab data taken in 2007,

the following parameters were adopted 3 (region size), 4.5 (region threshold), and

10 (isolated threshold). Images that do not survive cleaning are excluded from

further analysis.
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Table 3.1. Summary of standard ChiLA analysis settings.

Parameter Value

Integration Parameters

∆tmin 5 samples

∆tstart 0.5 samples

αwidth 3 samples/decade

αstart 0.5 samples/decade

Cleaning Parameters

Region Size 3

Region Threshold 4.5σ

Isolated Threshold 10σ

Image Quality Cuts

Minimum Image Size 250 DC

Minimum Image Pixels 3

Maximum Image Distance 1.5 degrees

Minimum Telescopes 2

Lookup Table Options

Scaled Parameter Weight 1

Telescope Energy Weight 1

Energy Reconstruction Quality Cuts

Maximum Impact Distance 250 m

Maximum Image Distance 1.3 degrees
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3.2 Event Parameterization and Reconstruction

The cleaned telescope images are used to calculate a reduced set of event parame-

ters that include the focal plane image moments (Section 3.2.1), the 3D trajectory

of the shower primary (Section 3.2.2), the shower energy (Section 3.2.4), and dis-

crimination parameters for cosmic-ray background rejection (Section 3.2.3).

3.2.1 Telescope Image Parameterization

The basic telescope image parameters are given by the first three moments of the

light distribution in the focal plane,

Si =
∑

j

sij,

V α
i =

1

Si

∑

j

sijp
α
ij,

T αβi =
1

Si

∑

j

sijp
α
ijp

β
ij,

(3.11)

where i is the telescope index, sij and pαij are the signal and focal plane coordinate,

α = x, y, of pixel j (Hillas, 1985). The zero moment, Si, and first moments, V x,y
i ,

are referred to as the image size and centroid coordinates, respectively. The

norm of the vector V α
i equal to the separation of the centroid from the center

of the field of view is the image distance. The tensor T αβ − V αV β defines the

second central moments with eigenvectors corresponding to the principle axes

of the image (̺,κ) and eigenvalues (l2, w2) referred to as the length and width

(l > w).
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3.2.2 Event Geometry Reconstruction

The 3D trajectory of the shower primary is characterized by its arrival direction

e and core location R. The ChiLA package implements three event reconstruc-

tion methods (Vassiliev & Fegan, 2005) that operate on the principle of finding a

shower trajectory (e,R) that minimizes a chi-squared like functional. In Method

1, images in the different telescopes are treated independently and the minimiza-

tion functional is the sum squared distances to the Cherenkov photons collected

by the telescopes. Method 2 optimizes the trajectory parameters based on a si-

multaneous fit to all images of e and R vectors projected onto the focal plane.

Method 3 performs an optimization in three dimensional space and minimizes the

square of the shortest distances of back-projected trajectories of individual pho-

tons in all telescopes to the trajectory of the primary. The inclusion of dim and

truncated images was found to diminish the performance of these reconstruction

algorithms, and therefore a set of quality criteria are used to select a subset of

images to be used in reconstruction. The default values of the quality criteria

used in stage2 are given in Table 3.1.

The simplest reconstruction method, Method 1, operates on the two dimen-

sional projection of the shower in the focal plane of each telescope. The image

axes, (κ, ̺), are derived independently for each telescope by finding the eigenvec-

tors of the second central momenta. The vector describing the closest approach

of the image axis to the projected source position, ξ, is given by

∆e,i = ((ξ − Vi) · ̺i)̺i (3.12)

The vector components ξα are found by minimizing

χ2
e =

∑

i

Si
l2i − w2

i

w2
i

(∆e,i ·∆e,i) . (3.13)
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Primary Direction

Figure 3.3 Left: Illustration of parameters used for reconstruction of the shower

direction. Right: Illustration of parameters used for reconstruction of the shower

core position.

The contribution of each telescope is weighted by both the image size Si and

ellipticity (l2i − w2
i ) /w

2
i . The latter factor decreases the effect of the images with

nearly degenerate eigenvectors onto the reconstructed position of the source ξ.

For the reconstruction of the core position, one can likewise define a distance

of closest approach between the image axis and the core position relative to the

telescope,

∆R,i = ((R− ri) · ̺i)̺i (3.14)

where ri is the position of telescope i in the focal plane. The core position, Rα,

is then found by minimizing,

χ2
R =

∑

i

Si
l2i − w2

i

w2
i

(∆R,i ·∆R,i.) (3.15)

Method 1 is most frequently used in this work; the detailed descriptions of Method

2 and Method 3 is outlined in (Vassiliev & Fegan, 2005).
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3.2.3 Event Identification

A significant challenge for the analysis of TeV gamma-ray data is the overwhelm-

ing cosmic-ray background. To isolate gamma-ray signals, one needs to devise a

discrimination method between cosmic-ray and gamma-ray initiated Cherenkov

showers. A widely used method (Krawczynski et al., 2006) for identifying gamma-

ray-like events is based on the introduction of the discrimination parameters,

p̃i =
pi − psim(ρi, Si)

σsim(ρi, Si)
, (3.16)

where psim(ρi, Si) and σsim(ρi, Si) are the expectation and standard deviation of

the parameter derived from simulations as a function of image size, S, and tele-

scope impact distance, ρi = |R − ri|. The implementation adopted for ChiLA

uses the median and 68% containment interval to generate the tables for expec-

tation value and standard deviation for the focal plane parameters width, length,

and disp. The disp parameter is defined as the distance between the image cen-

troid and the projected source position (|ξ −Vi|). The mean scaled parameter

is constructed from a weighted average of the p̃i over all telescopes in the event,

〈p̃〉 =

(
∑

i

1

σsim(ρi, Si)δ

)−1
∑

i

p̃i
σsim(ρi, Si)δ

. (3.17)

In this formula, the definition of mean scaled parameter is generalized by intro-

ducing a variable weighting factor controlled by the power index δ. Increasing δ

effectively suppresses the contribution of telescopes with significant fluctuations

in the parameter value.

3.2.4 Event Energy Estimation

The reconstruction of the primary particle energy of each event is an essential

input for spectral analysis of gamma-ray sources. The intrinsic brightness of a
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Cherenkov shower scales with the number of secondary particles produced in the

electromagnetic cascade and thus can be used as a proxy for the energy of the

shower primary. Due to the highly nonuniform Cherenkov emission pattern on

the ground, the apparent shower brightness in each telescope has a complex de-

pendence on the impact distance and event energy. For radii larger than ∼125 m

the image size decreases rapidly, first as a power-law and then exponentially with

impact distance. The energy estimator is the function derived from simulations

that is used to assign to each event a most probable energy based on the event

geometry and telescope image sizes.

The methodology adopted for the gamma-ray energy estimator is similar

to that used for event identification discrimination parameter described in Sec-

tion 3.2.3. Using Monte Carlo simulations, a lookup table for gamma-ray energy

is constructed for each telescope as a function of telescope image size, S, and

one or more additional reconstructed parameters, p. Tables with p = {ρ} and

p = {ρ, disp} were explored. Two methods for creating the energy lookup ta-

ble have been studied: EnergyTable and InverseSizeTable. For the EnergyTable

method, the distribution of simulated energies is fixed to follow a power-law dis-

tribution with index Γ (e.g. a power-law with Γ = 2.5). This is achieved by

assigning a weight w(E) to each event. The EnergyTable method accumulates

the distribution of simulated event energies in each bin of an N-dimensional his-

togram with axes {S,p}. In each bin the energy estimator, E(S,p), is set to the

median energy in that bin while the dispersion, σE(S,p), is calculated from the

68% containment interval. The resulting lookup tables, E(S,p) and σE(S,p),

depend weakly on the choice of the input energy distribution.

The InverseSizeTable method performs a direct inversion of the function re-

lating median size and true event energy and thus is independent of the energy
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distribution of the Monte Carlo training sample. Distributions of image size are

accumulated in each cell of an N-dimensional histogram with axes {E,p}, where

E is the true gamma-ray energy. Lookup tables for median size, S(E,p), and its

dispersion, σS(E,p), derived from the 68% containment interval are then gen-

erated from the size distribution in each bin. For a given p the monotonically

increasing function of energy S(E;p) is fitted with the polynomial of minimal

order which satisfies χ2/ndf ≃ 1 with the constraint dS(E;p)/dE > 0. The

polynomial is then numerically inverted to produce a corresponding function in

energy, E(S;p). Figure 3.4 illustrates distributions of size versus energy and the

associated polynomial fits calculated for the size table with p = {ρ, disp}. The

dispersion of the energy estimator is calculated as σE(S,p) = σS(E,p)dE/dS

where energy is evaluate at E(S,p). Lookup tables for the energy estimator and

dispersion calculated with the InverseSizeTable method and p = {ρ} are shown

in Figure 3.5.

Using the energy lookup tables, an energy estimator is calculated for each

telescope image passing the energy reconstruction quality cuts summarized in

Table 3.1. The event energy estimate is a weighted average of the energy estimates

of each telescope,

〈E〉 =

(

∑

i

1

σE(Si,pi)α

)−1
∑

i

E(Si,pi)

σE(Si,pi)α
, (3.18)

where α is a parameter controlling the weighting factor of each telescope due to

uncertainty in estimation of energy.

The optimal energy estimator must have good energy resolution (∆E/E)

and ideally should also have minimal bias across the range of energies where

VERITAS is most sensitive (100 GeV . E . 10 TeV). The performance of

different estimators is compared using the bias and dispersion in logarithmic
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Figure 3.4 Median image size, S(E,p), versus gamma-ray energy, E, and the

associated polynomial fits from the size table with p = {ρ, disp} at four dis-

crete points in {ρ, disp}: {80 m, 0.6◦} (solid circles, red line), {80 m, 1.0◦} (solid

squares, blue line), {200 m, 0.8◦} (open circles, dashed red line), and {200 m, 1.2◦}
(open squares, dashed blue line). The distributions shown were generated from a

simulated gamma-ray sample with Zn = 20◦, Az = 0◦, and RNSB = 0.07 PE ns−1.
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Figure 3.5 Energy estimator (left) and energy estimator dispersion (right) as a

function of image size and telescope impact distance obtained with the Inverse-

SizeTable method and p = {ρ} .
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Figure 3.6 Left: Energy estimator resolution (∆ log10E) as a function of true

gamma-ray energy for tables generated with the InverseSizeTable method and

p = {ρ, disp} (black circles), InverseSizeTable method and p = {ρ} (red squares),

and the EnergyTable method and p = {ρ, disp} (green upward triangles). All

three estimators were calculated with an energy estimator weighting index, α = 1.

Right: Energy estimator bias (δ log10E) as a function of true gamma-ray energy

for the three estimators shown in the left panel.
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energy space defined as

δ log10E =
〈

log10 Ẽ
〉

− log10E,

∆ log10E =

√

〈

(

log10 Ẽ
)2
〉

− (log10E + δ log10E)2,

(3.19)

where Ẽ denotes the estimated energy. Figure 3.6 shows a comparison of the en-

ergy resolution and bias of three different energy estimators applied to a sample

of simulated gamma rays analyzed with the Standard cuts analysis. The addi-

tion of disp as an independent dimension of the energy estimator improves the

energy resolution in the low- to mid-energy range by ∼ 25% and significantly

reduces the estimator bias for low energy events. It was found that the effect

of the disp parameter on the energy estimator is only significant when one or

more telescopes detect Cherenkov radiation inside the light pool (ρ . 125 m).

Most of the low-energy events (E . 150 GeV) are detected in this regime. The

EnergyTable and InverseSizeTable methods have comparable energy resolution

above ∼ 300 GeV but the InverseSizeTable methods results in a consistently

smaller bias at these energies. The choice of weighting index α = 1 was found to

marginally improve the energy resolution as compared to an unweighted average

of the energy estimates (α = 0).

3.3 Gamma-ray Selection Optimization

Hadron-initiated atmospheric cascades constitute the vast majority of the events

recorded by VERITAS. To reduce the background contamination in the param-

eterized event sample produced by stage2, a set of cuts is applied at stage3. The

optimized cut values are chosen to maximize the signal-to-noise ratio for a weak

source (detected in the background-dominated regime) with a given spectrum.

Cut optimization is performed by finding an optimal cut volume in the pa-
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Table 3.2 Optimized analysis cuts. For Size2 the table shows the lower bound

while for the other parameters the upper bound is given.

Size2 [DC] MSW MSL MSD θ2 [deg2]

Soft Cuts (Γ = 3.5) 300 0.6 1.5 1.8 0.0182

Standard Cuts (Γ = 2.5) 550 0.8 1.4 1.7 0.0144
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Figure 3.7 Relative signal-to-noise ratio as a function of cut values for MSW and

− log10(Size2/DC) for a simulated source with Γ = 2.5 (left) and Γ = 3.5 (right)

and a sample of background events from Crab Nebula observations taken in Fall

2009. The gamma-ray event sample was simulated with Zn = 20◦, Az = 0◦, and

RNSB = 0.07 PE ns−1.
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rameter space which is a subset of event parameters calculated in stage2. The cut

parameters adopted for the ChiLA analysis are the second largest image size in

the event (Size2 ) and the three mean scaled parameters defined in Section 3.2.3:

width (MSW), length (MSL), and disp (MSD). In principle for each parameter, a

range can be found bounding the lowest and highest acceptable values. However

for the given parameter set, the application of a lower bound has an insignificant

effect on the cut sensitivity and therefore only upper bounds were optimized. An

important consideration when defining a set of cuts is the a priori expectation

for the source spectrum. For the majority of VHE sources detected, the spec-

trum can be described by a power-law energy distribution dN/dE ∝ E−Γ where

Γ is 2–4. To optimize the detection of weak sources with power-law spectra en-

compassing this range, two sets of selection cuts were derived using simulations

(Table 3.2). An additional optimization condition was imposed to retain at least

20% of the detected photons of the original simulation sample. Figure 3.7 shows

a plot of the relative signal-to-noise ratio as a function of cut parameters for

Standard (optimized for Γ = 2.5) and Soft cuts (optimized for Γ = 3.5).

3.4 Instrument Response Model

The instrument response model (IRM) is a critical input to the stage3 analysis

as it relates detected events from the direction of the target to the physical char-

acteristics of the source such as absolute gamma-ray flux, spectrum, and angular

extent. The IRM is generated by analyzing simulated gamma-rays propagated

through the same analysis chain as the data. The IRM is a function of both

the hardware configuration with which the data set was taken and the settings,

reconstruction algorithms, and cuts that were used for analysis. The ChiLA anal-

ysis package incorporates a dedicated tool to derive the three main components
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of the IRM: the effective collecting area, point spread function, and the energy

response function.

The IRM sensitively depends on the zenith angle of observations and to a

lesser degree on the azimuth angle and sky brightness of the observation field.

In order to fully model dependence of the IRM on these parameters, a library of

response functions is constructed by analyzing a database of gamma-ray simula-

tions generated at discrete pointings (Zn/Az) and sky brightness levels (RNSB).

Each response function is parameterized as a function of true gamma-ray energy

(E) and field angle (ψ) of photon arrival direction with respect to the optical axis

of the telescopes. The IRM for an arbitrary pointing and sky brightness level is

then interpolated from the set of discrete response functions in the library. In

a typical data set, the IRM is a time-dependent quantity as the pointing of the

array continuously changes while tracking a target fixed in celestial coordinates.

The IRM is therefore calculated as a live-time weighted average over a set of

interpolated response functions for discrete time intervals in the data set.

The effective collecting area is the detection cross-section of the instrument

to a uniform gamma-ray flux. At a given energy, the gamma-ray detection ef-

ficiency is approximately flat with the distance, ρ, from the array center before

rapidly falling to zero beyond a certain radius. To compute the gamma-ray ef-

fective collecting area, simulated gamma-ray showers are sampled with a random

distribution in the plane orthogonal to the mean optical axis of the array out to

a maximum distance ρmax(Ei) from the array center which is chosen to be larger

than the radius at which the gamma-ray detection efficiency rapidly drops. The

effective gamma-ray collecting area at energy Ei is then given by

A(Ei) = πρmax(Ei)
2ǫ(Ei), (3.20)

where ǫ(Ei) = Nsel(Ei)/Nγ(Ei) is the gamma-ray detection efficiency, Nγ(Ei) is
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Figure 3.8 Left: Model for the effective collecting area as a function of gamma-

ray energy and offset angle for a simulated gamma-ray data set with Zn = 20◦,

Az = 0◦, and RNSB = 0.07 PE ns−1 analyzed with Standard cuts. Right: Model

for the effective collecting area from the left figure shown at three discrete offset

angles: 0.5◦ (red line), 1.0◦ (blue line), and 1.25◦ (green line). Black data points

with error bars show the effective area estimates at discrete simulated energies

from which the effective area model was derived.
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the total number of simulated gamma rays at each energy, and Nsel(Ei) is the

number of gamma rays that trigger the detector and pass all selection criteria.

The error of the effective area measurement is estimated as

δA(Ei) = πρmax(Ei)
2

√

ǫ(Ei) (1 − ǫ(Ei))

Nγ(Ei)
. (3.21)

Figure 3.8 illustrates the dependence of the collecting area as a function of

energy and offset angle. The effective area in logA-logE space shown in the

right panel has two approximately linear regions joined at a break energy, E0.

The collecting area A(E;ψi) for an arbitrary energy E and discrete simulated

offset angle ψi in log-log space is approximated by a 6th order polynomial (f1)

below E0 and a 5th order polynomial (f2) above E0 with the continuity require-

ments: f1(E0) = f2(E0) and f ′
1(E0) = f ′

2(E0). The break energy is defined as

the minimum energy at which d lnA/d lnE < 2. After fitting the effective area,

A(E;ψi), at each discrete offset ψi, the model is interpolated to an arbitrary ψ

with the use of a cubic spline. The left panel of Figure 3.8 shows an example

of the two-dimensional effective area, A(E;ψ), as a continuous function of its

arguments. The effective area as a function of energy rises as a power-law with

large spectral index of order 8–10 below E0. For small offset angles (< 0.5◦) the

collecting area remains nearly constant as a function of energy. As the angle ψ

increases the effective area declines nearly as a power-law with spectral index

0–0.5. As a function of offset angle, the effective area is monotonically decreasing

with ψ and falls more rapidly at high energies. At the camera edge (ψ = 1.75◦)

the gamma-ray throughput is ∼0.2 relative to the camera center.

The gamma-ray PSF is used to characterize the distribution of reconstructed

directions from a gamma-ray point-source. The PSF is modeled as an azimuthally
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Figure 3.9 Top: Gamma-ray PSF as compared to the θ2 distribution of simulated

events with ψ = 0.5◦ and gamma-ray energies of 316 GeV (black circles and red

line) and 1 TeV (blue line and black triangles). The model was derived from

a simulation data sample with Zn = 20◦, Az = 0◦, and RNSB = 0.07 PE ns−1

analyzed with Standard cuts. Bottom: 68% containment radius of the gamma-

ray PSF as a function of gamma-ray energy and offset angle for a simulation

data sample with Zn = 20◦, Az = 0◦, and RNSB = 0.07 PE ns−1 analyzed with

Standard cuts.
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symmetric two-component gaussian given by

dP

dθ2
=

α

σ2
1

e
−θ2

2σ2
1 +

(1 − α)

σ2
2

e
−θ2

2σ2
2 , (3.22)

where θ is the angle between the true and reconstructed directions, σ1 and σ2

are parameters describing the width of the core and tail PSF components respec-

tively (σ1 < σ2), and α is a parameter controlling the relative amplitude of these

two components. Figure 3.9 shows a comparison of the PSF at two gamma-ray

energies and the 68% containment radius of the PSF as a function of energy and

offset angle. For a gamma-ray source near the center of the FoV, the angular

resolution improves monotonically with energy. At larger offsets, the angular

resolution degrades at the highest energies due to truncation effects at the edge

of the FoV.

The energy response function (ERF) is the p.d.f. for reconstructed energy

E ′ given a true energy E and is directly tied to the choice of estimator used

for energy reconstruction (Section 3.2.4). The ERF is modeled as a sum of two

gaussians in logarithmic energy,

dR(E ′;E)

d log10E
′

=
α

√

2πσ2
1

exp

[

−(log10E
′ − b1)

2

2σ2
1

]

+
1 − α
√

2πσ2
2

exp

[

−(log10E
′ − b2)

2

2σ2
2

]

(3.23)

with four free parameters {σ1(log10E), b1(log10E), σ2(log10E), b2(log10E)} cor-

responding to the mean and dispersion of each gaussian which are treated as

smooth functions of the gamma-ray energy, E. The introduction of two gaus-

sian distributions was motivated by the necessity to model small asymmetries

present in the simulated distributions. To remove significant degeneracies when

fitting the ERF parameters, the amplitude parameter, α, is fixed to 0.8. This

choice provides good ERF fits to the reconstructed energy distributions for all

energies of interest. The logarithmic bias and energy resolution (Equation 3.19)
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Figure 3.10 Left: ERF, dR(E ′;E)/d log10E
′, of the energy estimator derived

using the InverseSizeTable method and p = {ρ, disp} and a sample of simulated

gamma-rays with ψ = 0.5◦, Zn = 20◦, Az = 0◦, and RNSB = 0.07 PE ns−1.

Right: ERF from the left figure compared to the reconstructed energy distri-

bution of simulated gamma-rays at three discrete gamma-ray energies: 100 GeV

(black circles and red line), 316 GeV (black squares and blue line), and 1 TeV

(black triangles and green line).
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are related to the ERF parameters as

δ log10E = log10E − αb1 − (1 − α)b2

(∆ log10E)2 = ασ2
1 + (1 − α) σ2

2 + α (1 − α) (b1 − b2)
2 .

(3.24)

Figure 3.10 illustrates the general characteristics of a typical ERF. At inter-

mediate energies (316 GeV . E . 10 TeV) the energy estimator is relatively

symmetric and unbiased (b1 = b2 ≃ log10E). In the lower energy domain (E

. 316 GeV) the reconstructed energy, E ′, systematically overestimates the true

energy, the energy response function becomes asymmetric, and the energy reso-

lution (∆ log10E) related to σ1 and σ2 deteriorates.

3.5 Background Modeling

After gamma-ray selection cuts have been applied to the event sample, maps

of the distribution of event directions in the celestial coordinate frame of right

ascension and declination, {α, δ}, are created. In a typical data set, the event

distribution is dominated by the smooth and relatively flat distribution of residual

background (cosmic-ray) events surviving the gamma-ray selection. Gamma-ray

sources within the field of observations are identified by searching for significant

deviations in the background in these maps. Therefore detailed understanding

of the cosmic-ray background has direct implications on VERITAS sensitivity,

particularly for weak gamma-ray sources.

The background modeling analysis is performed in a two-dimensional carte-

sian coordinate system r = {xα, xδ} which is a projection of the celestial coordi-

nate system onto the tangent plane at an origin point θ0 = {α0, δ0}. A data set

consists of a series of exposures taken while the VERITAS array tracks J discrete

positions with coordinates rj. The standard observing strategy used for the ma-
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jority of VERITAS observations is the wobble technique wherein observations are

alternately taken at a set of four discrete positions at the same offset (typically

0.5 degrees) relative to the nominal source position. Because the main features in

the distribution of the background are set by the event positions relative to the

camera center, each event is identified by both a position vector and an associated

pointing index.

The analysis of the distribution of projected event arrival directions is per-

formed in two stages. First, a camera acceptance function (Section 3.5.1) is fit to

the data in order to model the background distribution in the absence of gamma-

ray sources. The significance and amplitude of a gamma-ray excess at an arbi-

trary point in the observed field is then determined using one of three methods:

the reflected-region method (Section 3.5.2), the ring-background method (Sec-

tion 3.5.3), and the maximum-likelihood method (Section 3.5.4). The first two

methods are the standard VERITAS analysis techniques (Acciari et al., 2008) and

have been extensively studied (Berge et al., 2007). A more detailed description of

the maximum-likelihood method has been presented in a VERITAS collaboration

memo (Wood & Vassiliev, 2009).

3.5.1 Camera Acceptance

The distribution of residual background events in celestial coordinates is approxi-

mately centered on the array pointing and approaches zero at offset angles beyond

the edge of the FoV (ψ & 1.75◦). The distribution of these events is modeled using

the camera acceptance function (ξ(r − rj)), the p.d.f. for the background distri-

bution in the r coordinate system centered on the array tracking coordinate, rj.

To first order, ξ is an azimuthally symmetric function of its argument. To higher

orders, statistically significant deviations from azimuthal symmetry such as gra-
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dients across the FoV may also be present. The camera acceptance is influenced

by both the conditions under which a set of observations were taken (e.g. zenith

angle) and the selection cuts that are applied to the data. In the implementation

adopted for the ChiLA package, the acceptance function is treated as a unique

distribution for each data set. It is therefore estimated only from the given data

sample and does not incorporate any prior information from simulations or data

taken under similar observing conditions.

An important consideration when modeling the camera acceptance is the pres-

ence of stars and known gamma-ray sources both of which can introduce small

scale structures in the event distribution. Pixels in the vicinity of a bright star are

automatically suppressed by the high-voltage software which results in a deficit of

reconstructed events at the position of the star on the scale of ∼ 0.3◦. The effect

of stars on the reconstructed counts distribution is greatest for analyses with a

low Size2 cut. The characteristic scale of the distribution of the cosmic-ray back-

ground is significantly larger than these small scale structures and comparable

to the size of the camera FoV. Therefore when modeling the acceptance func-

tion, a 0.4◦ region is excluded around each known star (MV < 6) and gamma-ray

point-source.

A parameterization for the camera acceptance, ξ(ρ), which is the square of

a Bessel series expansion in polar coordinates {ρ, φ} was developed in Wood &

Vassiliev (2009),

ξ(ρ;θ = {δc01, . . . , δcmn}) =
1

πR2

∣

∣

∣

∣

∣

c+
∞
∑

m=−∞

∞
∑

n=1

δcmn
J|m|

(

λmnρ
R

)

J|m|+1(λmn)
eimφ

∣

∣

∣

∣

∣

2

, (3.25)

where δcmn = (δc−mn)∗ = |δcmn|eiφmn are free parameters and the coefficient c is

fixed by the condition that the function be normalized to one over the circle of ra-

dius R. The coefficients δcmn are found by application of the maximum likelihood
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Figure 3.11 Top: Camera acceptance function, ξ, for the 2009-2010 RGB

J1351+112 data set analyzed with Soft cuts. Bottom: Projection of the ac-

ceptance function in the top figure compared to the projected counts distribu-

tion for the regions with −0.1◦ < Y < 0.1◦ (filled circles and red line) and

−0.1◦ < X < 0.1◦ (open circles and blue line).
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method and the requirement that the coefficients have values that statistically

significantly differ from zero. The introduction of 4 m = 0, 2 m = 1, and 1 m = 2

coefficients was found to be sufficient to fit the background distribution for the

majority of VERITAS observations. For example, Figure 3.11 shows the camera

acceptance function derived using the parameterization of Equation 3.25 for the

RGB J1351+112 dataset taken in 2009-2010. The counts distribution for this data

set is characterized by a statistically significant gradient with |δc11| = 0.20±0.04

and φ11 = 18 ± 10.

3.5.2 Reflected Region Method

The reflected-region method evaluates the significance and amplitude of a gamma-

ray signal by calculating the counts excess within a circular aperture (ON Region)

of radius θ0 centered at the trial position, ri. The background amplitude in the

ON region is estimated from the number of events in a set of non-overlapping

OFF regions of equal radius that are offset by the same distance ψ from the center

of the FoV. The number of OFF regions is generally chosen to fill the entire ring

of radius ψ outside of a source exclusion region around the test position. Events

falling in any of the predefined star or gamma-ray source regions are excluded

from the background estimate. The geometric arrangement of ON and OFF

regions is illustrated in Figure 3.12.

The counts excess in the ON region is given by

ne =
∑

j

[ns,j − αjnb,j] , (3.26)

where ns,j and nb,j are the number of counts detected in the ON and OFF regions

respectively for pointing j and αj is the ratio of the solid angles subtended by

the ON and OFF regions. In the simplest case in which the OFF regions do
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of the FoV. For a data set taken with the wobble technique, this systematic error

approximately cancels at the source coordinate if an equal number of observations

are taken in each wobble direction. Because the background is estimated from

the regions significantly offset from the trial position, any non-uniformities in the

background distribution in the FoV may also result in considerable systematic

errors. Due to these deficiencies, the reflected-region method is not suitable as a

general purpose tool for background estimation and is normally used for spectral

analysis only (see Section 3.6).

3.5.3 Ring Background Method

The ring-background method is an aperture-based technique that partially cor-

rects for departures from azimuthal symmetry in the background distribution.

The excess in a circular ON region of radius θ0 is evaluated using the background

amplitude in an annular OFF region centered on the the trial position with inner

and outer radii, {θ1, θ2} (see Figure 3.12). The acceptance normalization factor,

αj, for trial position ri and pointing j is given by the ratio of the integral of the

camera acceptance, ξ(r), over the ON and OFF regions,

αj(ri) =

∫ 2π

0

∫ θ0
0
ξ(ri − rj − r′)r′dr′dφ

∫ ∫

A
ξ(ri − rj − r′)r′dr′dφ

, (3.28)

where A is the region of the background annulus that does not intersect any ex-

clusion regions. The counts excess and its significance is calculated using Equa-

tions 3.26 and 3.27. Because the background estimate incorporates information

from the camera acceptance, the ring background method can explicitly com-

pensate for linear gradients in the FoV and partially for higher order structures

in the background distribution on the scales larger than the annular ring size.

Increasing the size of the annular region improves the sensitivity of the method

due to better estimation of the background but diminishes the ability of the
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method to compensate for local structures in the background distribution in the

vicinity of the source position. For the detection in the background-dominated

regime, the increase in sensitivity scales as
√

1 + α as the ring size increases. The

parameters of the ring background method adopted for the ChiLA analysis are

{θ1, θ2} = {0.4◦, 0.5◦}. When θ0 is chosen to be 0.12◦, the approximate value of

α in the central regions of the camera is 0.16.

3.5.4 Maximum Likelihood Method

The maximum-likelihood method fits a two-dimensional multi-parameter counts

model to the binned event distribution. The bin occupation, nij, is calculated

with a bin size ∆Ω and bin coordinates rij for a set of J pointings where i and j

indices designate the sky coordinate and pointing respectively. A counts model,

ν(rij;θ), is constructed to predict the expectation value for the bin occupations

nij as a function of the free parameters, θ. The maximum likelihood estimates

for the model parameters, θ̂, are determined by maximizing the log likelihood

function,

lnL(n|θ) =
J
∑

j=1

Nj
∑

i=1

[nij ln ν(rij;θ) − ν(rij;θ) − lnnij!] , (3.29)

with respect to the free parameters θ where the summation is carried out over Nj

bins for each of J pointings. Exclusion regions are incorporated into the model

by removal of bins from the summation.

The counts model is decomposed into contributions from signal (gamma-ray)

and background (residual cosmic-ray) components. The signal component is cal-

culated as a convolution integral,

νs(rij;θs) = ∆Ωτj

∫ ∫

d2r′dE ′dAj(E
′, r′ − rij, r′ − rj)

dΩ
fγ(r

′, E ′;θs), (3.30)
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Figure 3.13 Comparison of the θ2 distribution for the PG1553+200 data set taken

in 2009-2010 and the point-source models with free parameters estimated using

the maximum-likelihood method for three different choices of spectal index: Γ =

2.5 (red line), Γ = 3.5 (green line), Γ = 4.5 (blue line).
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where τj is the cumulative livetime for observations taken at pointing j, rj is

the tracking coordinate, dAj/dΩ is the livetime weighted product of the effective

area and PSF response functions (Section 3.4) for pointing j, and fγ(r, E;θs)

is the intrinsic angular distribution and differential spectrum of the source. For

example, a point source at the coordinate r0 with a power-law energy distribution

is expressed as

fγ(r, E;θs = {F0,Γ, r0}) = F0

(

E

E0

)−Γ

δ(r − r0). (3.31)

Due to the dependence of the PSF and effective area on energy, the signal model

is weakly dependent on the choice of the power-law index, Γ (see Figure 3.13).

The background model is constructed by introducing a set of free normalization

parameters, Bj, for each of the J pointings which are used to scale the camera

acceptance function,

νb(rij;θb = {B1, . . . , BJ ,θξ}) = ∆ΩBjξ(rij − rj;θξ), (3.32)

where θξ are the free parameters of the acceptance function defined in Sec-

tion 3.5.1.

The optimization of the likelihood function is performed numerically using

an iterative search technique. A suitable starting point in the space of model

parameters is found analytically using the formulae presented in Wood & Vassiliev

(2009). Once the optimal parameters are found, the significance of a gamma-ray

source is determined by forming the log likelihood ratio for the null and non-zero

excess hypotheses,

ln Λ = lnL(n|θ̂′b) − lnL(n|θ̂b, θ̂s) (3.33)

where θ̂′b are the maximum likelihood estimates of the background model pa-

rameters under the null hypothesis and θ̂b and θ̂s are the maximum likelihood

estimates of the background and signal model parameters under the non-zero
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excess hypothesis. According to Wilks’ theorem, −2 ln Λ is asymptotically dis-

tributed as χ2 with S degrees of freedom, where S is the difference in the number

of free parameters between the two hypotheses.

3.6 Spectral Reconstruction

The spectral reconstruction of a source is the determination of its intrinsic source

spectrum in true gamma-ray energy, E, from the measured spectrum of re-

constructed event energies, E ′. In terms of the logarithmic energy variable

x = log10E, the reconstructed energy spectrum, dN/dx′, is related to the true

spectrum, dφ/dx, by the integral equation,

dN

dx′
= τ

∫

dR(x′; x)

dx′
A(x)

dφ

dx
dx, (3.34)

where τ is the livetime, A(x) is the gamma-ray effective area, and dR(x′; x)/dx′

is the energy response function (Section 3.4). Equation 3.34 is discretized into a

system of linear equations by integrating over logarithmic bins in true and and

reconstructed energy,

∫ x′i+∆′/2

x′i−∆′/2

dN

dx′
dx′ = τ

∑

j

∫ x′i+∆′/2

x′i−∆′/2

∫ xj+∆/2

xj−∆/2

dR(x′; x)

dx′
A(x)

dφ

dx
dxdx′, (3.35)

where x′i and xj are the central logarithmic energies for reconstructed energy bin

i and true energy bin j and ∆ and ∆′ are the logarithmic bin widths in true and

reconstructed energy. Expressed as matrix equation of a vector φ,

φj =

∫ xj+∆/2

xj−∆/2

dφ

dx
dx, (3.36)

and kernel matrix K,

Kij =
τ

φj

∫ x′i+∆/2

x′i−∆/2

∫ xj+∆/2

xj−∆/2

dR(x′; x)

dx′
A(x)

dφ

dx
dx′dx, (3.37)
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Equation 3.35 becomes

νi =
∑

j

Kijφj, (3.38)

where νi is the expectation value for the number of events in reconstructed energy

bin i and φj is the integral flux in true energy bin j. In general the kernel matrix

depends on the intrinsic spectral properties of the source. The choice of bin size

used to calculate the kernel matrix is motivated by the characteristic scale, σ, of

the response function and the anticipated spectral properties of the source. For

the astrophysical sources that can be described by a power-law spectrum within

the energy range comparable to the width of the response function, σ, and with

characteristic bin size of order σ/2 the matrix K depends weakly on the exact

choice of the spectral index Γ. The kernel matrix is thus calculated assuming

dφ/dx ∝ E−Γ+1 with Γ = 2.5 for all subsequent analysis. In principle, the

accuracy of spectral reconstruction could be iteratively refined by substituting

dφ/dx with the reconstructed spectrum and including corrections to the matrix

K. However such corrections are on the scale of 1–2% which is significantly

smaller than typical systematic errors (∼ 10%).

The distribution of reconstructed energies Υj obeys Poisson statistics with

the expectation values,

Ῡs = Kφ+ ανb, (3.39)

where ανb is the vector of background expectation values. For each energy bin,

νb,j is estimated utilizing the reflected-region method described in Section 3.5.2.

Distributions of reconstructed energies, Υs and Υb, are accumulated from the

ON region centered on the source position and from the set of reflected OFF

regions. The excess vector due to the signal in the on region is

Υe = Υs − αΥb. (3.40)
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Because the energy bins are uncorrelated, the covariance matrix of Υe is diagonal

with elements given by

Vii = Υs,i + α2Υi,b. (3.41)

While the ring-background and maximum-likelihood methods are both more

robust to gradients and structures in the background distribution, the applica-

tion of these methods to spectral analysis would require an energy-dependent

model for the camera acceptance. The introduction of a third dimension to the

acceptance function significantly reduces the available statistics in individual bins

and therefore the construction of such a model would need to rely upon results of

high-statistics simulations or additional physical considerations about the energy-

dependence of the acceptance function. On the other hand, if the assumption of

azimuthal symmetry is valid, the reflected-region method allows extraction of the

energy dependence of the expected background without an explicit model for the

camera acceptance. As discussed in Section 3.5.2, the reflected-region method

also partially corrects for a gradient in the background distribution when the ON

region is at or near the wobble position which is typically the case for targeted

observations.

Inferring the source spectrum given an equation of the form of Equation 3.39 is

an ill-defined inverse problem with the exception of trivial cases for the matrix K.

Direct inversion of the response matrix is frequently unstable due to the existence

of small eigenvalues and the non-zero projection of the corresponding eigenvectors

on the statistically fluctuating measurement vector. Thus small statistical fluctu-

ations in the measurement vector are amplified into large statistical fluctuations

in the solution vector. To alleviate this problem, several approaches to inferring

the source spectrum have been implemented in the ChiLA package. The forward-

folding method (Section 3.6.1) adopts an analytic model for the true spectrum
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and solves for the small set of model parameters that best fit the measured dis-

tribution. The alternative family of techniques known as regularized unfolding

methods make weaker, frequently integral assumptions about the underlying form

of the true distribution and can be used to generate a non-parametric spectral

model. A subclass of this family, the correction-factors method (Section 3.6.3),

derives estimates for the true spectrum by multiplying the reconstructed distribu-

tion by a set of scaling factors which are then iteratively refined using successive

estimates of the true spectrum. The regularized-unfolding method (Section 3.6.2)

uses the full information of the response matrix K and unfolds the solution by

imposing a constraint on the smoothness of the solution.

3.6.1 Forward-Folding

The forward-folding method assumes that the true spectrum can be accurately

described by elementary functions with a small number of free parameters. For a

number of VHE gamma-ray sources, the true spectrum can be well approximated

with a power-law, dφ/dE = F0 (E/E0)
−Γ, with two free parameters θ = {F0,Γ}.

The expectation value for the signal amplitude in each bin of reconstructed energy

is found by folding the distribution φ with the response matrix K,

νs(θs) = Kφ(θs). (3.42)

The log likelihood function for the energy distributions in the ON and OFF

regions, Υs and Υb, with acceptance correction α is given by,

lnL(Υs,Υb|θs,νb) =

N
∑

i

[

Υs,i ln (νs,i(θs) + ανb,i) − ln Υs,i! − νs,i(θs) − ανb,i

+ Υb,i ln (νb,i) − νb,i − ln Υb,i!
]

(3.43)
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where νb are the expectation values for the background amplitudes in the re-

constructed energy bins. The maximum likelihood estimates for νb are found by

solving the sequence of equations,

∂ lnL

∂νb,i
=

Υb,i

νb,i
+

αΥs,i

νs,i + ανb,i
− (1 + α) = 0, (3.44)

which has the solution for νb,i in terms of νs,i,

ν̂b,i =
νb0,i

2
− νs,i

2α
+

[

Υb,iνs,i
α (1 + α)

+
(νb0,i

2
− νs,i

2α

)2
]1/2

, (3.45)

where νb0,i = (Υb,i + Υs,i) / (1 + α) is the maximum likelihood estimate when

νs = 0. After substituting the background estimates from Equation 3.45 into the

log likelihood function, the only free parameters of the model are those associated

with the spectrum, θs. The maximization of the likelihood with respect to the

free parameters is performed using the Levenberg-Marquardt numerical algorithm

(Press, 2002). Figure 3.14 illustrates the forward-folding technique as applied to

the data set from the source 1ES0229+200 taken in 2009–2010.

3.6.2 Regularized Unfolding Method

The inversion of

Ῡe = Kφ (3.46)

is an ill-posed problem and the application of standard techniques for solving

a system of linear equations results in a solution that may become sensitive to

small perturbations in the data. The strategy used by the regularized-unfolding

method is to impose an a priori constraint on the solution by the introduction

of a penalty function. The inversion procedure is formulated as an optimization

problem by constructing a modified chi-squared functional,

χ2 = (Υe −Kφ)T V−1 (Υe −Kφ) + λφTLTLφ, (3.47)
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Figure 3.14 Top: Reconstructed energy distribution of 1ES0229+200 within the

ON source aperture with θ0 = 0.12◦. Black points indicate the unsubtracted

counts distribution. Shown for comparison are the maximum likelihood estimates

for the background in each bin, ν̂b, (green line) and background plus signal,

ν̂b + νs(θ̂) (red line). Bottom: Likelihood contours for 68% (solid line) and

90% (dashed line) C.L. corresponding to the spectral fit shown in the top figure.

The star indicates the best fit spectral model corresponding to F0 = 1.16 ×
10−7 m−2 s−1 TeV−1 and Γ = 2.62 with E0 = 316 GeV.
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where L is the regularization matrix and λ is the regularization parameter. When

applying the regularized unfolding method, the kernel matrix is chosen to be m-

by-n with m & 2n which ensures that the solution vector is over-constrained by

the data. The first term in Equation 3.47 prefers solutions that satisfy Equa-

tion 3.46 while the second term prefers solutions determined by the eigenvectors

and eigenvalues of the LTL matrix. The relative importance of these two terms is

controlled by the parameter λ. The solution vector that minimizes Equation 3.47

can be found by solving,

∂χ2

∂φ
= −2KTV−1 (Υe) + 2

(

KTV−1K + λLTL
)

φ = 0, (3.48)

which gives

φ̂ =
(

KTV−1K + λLTL
)−1

KTV−1Υe = BTΥe. (3.49)

The covariance matrix of the solution vector in the gaussian regime is given by

Vφ = BTVB. (3.50)

The sensitivity of the unregularized solution (obtained from Equation 3.49

when λ = 0) to small perturbations in the data vector arises due to the small

eigenvalues of the matrix KTV−1K. Using the decomposition KTV−1K =

UΣUT with Σ = diag(σ1, σ2, . . . , σn) and σ1 ≥ . . . ≥ σn, the unregularized

solution in the eigenvector basis of KTV−1K is

φ = UΣ−1UTb =
∑

j

cj√
σj

uj, (3.51)

where b = KTV−1Υe, cj
√
σj =

(

UTb
)

j
, and uj are the column vectors of U.

Thus the solution vector is a superposition of the eigenvectors uj each weighted

by a coefficient cj with unit variance and the inverse of the square root of the

associated eigenvalue 1/
√
σj. Figure 3.15 illustrates the eigenvectors, eigenvalues,
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and eigenvector coefficients obtained for the reconstruction of a simulated source

with 104 photons and a power-law spectrum with Γ = 2.5. The instability of the

unregularized solution is seen to arise from the terms in the eigenvector expansion

with small eigenvalues for which the fluctuations in the data result in a non-zero

coefficients cj. The division by the small eigenvalues amplifies the statistical error

in these high-frequency terms which leads to the large observed oscillations in the

unregularized solution.

The introduction of the regularization term is motivated to damp the contri-

bution of eigenvectors with small eigenvalues. The choice of the regularization

matrix L is motivated by a priori assumptions about the properties of the spec-

trum. A common choice of regularization is the class of Tikhonov regularization

functionals (Tikhonov & Arsenin, 1977) where the regularization term is equal

to the integrated square of the kth derivative:

∫ (

dk

dEk

dφ

dE

)2

dE. (3.52)

For the discrete solution vector φ, the derivate of order k is approximated by

finite differences as Lkφ where Lk is the regularization matrix. When k = 0,

the regularization matrix is equal to the identity matrix, L0 = I, and the reg-

ularization term is equal to the norm of the solution vector. When k = 1, the

finite difference approximation to the derivative is represented by the (n−1)-by-n

matrix,

L1 =























−1 1 0 0 . . .

0 −1 1 0 . . .

. . .

. . . 0 −1 1 0

. . . 0 0 −1 1























. (3.53)

One difficulty that arises in applying Tikhonov regularization is that the typical
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Figure 3.15 Left: Eigenvectors of the matrix KTV−1K corresponding to eigen-

values σ1 (black line), σ3 (red line), σ5 (green line), σ7 (blue line). A cubic spline

was used to interpolate between components of each vector for visualization pur-

poses. Right: Square-root of the eigenvalues (black points) and cj coefficients

(red points) of the matrix KTV−1K. The example shown corresponds to a sim-

ulated power-law spectrum with 104 photons and Γ = 2.5.

spectra encountered are steeply falling power-laws with Γ & 2.0. For such spectral

shapes, the function given in Equation 3.52 introduces a significant bias on the

unfolded solution by causing the low energy components to be oversmoothed.

One method for correcting this bias is to modify the regularization term by an

energy-dependent weighting for the global shape of the spectrum. It is natural

to choose weighting factors in such a way that for the most probable solution the

regularization term gives zero contribution. The preferred solution is estimated

by the forward-folding method described in Section 3.6.1 or by simply assuming a

power-law spectrum with Γ = 2.5 which is representative of an average spectrum

observed.

The effect of regularization term on the regularized solution is illustrated by

considering the regularization matrix L0. Expressed in the eigenvector basis, the
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Figure 3.16 Left: Relative bias, (φ̂i − φi)/φi, of the unfolded spectrum as a

function of energy for three values of the regularization parameter λ/σ1: 10−12

(black points), 10−10 (red points), 10−8 (green points). The example shown corre-

sponds to a simulated exponentially cutoff power-law spectrum with 105 photons,

Γ = 2.5, and Ecut = 1 TeV. Right: χ2 residual of the regularized solution as a

function of regularization parameter, λ. The three red horizontal lines indicate

the range of χ2 values corresponding to nndf , nndf ±√
nndf .

regularized solution is given by

φ̂ = U (Σ + λI)−1
UTb =

∑

j

σj
σj + λ

cj√
σj

uj, (3.54)

where the filter factors, σj/(σj + λ), are monotonically decreasing and have the

effect of damping the contribution of eigenvectors with σj < λ. The regularized

solution for the higher-order derivatives can be understood in a similar way when

the basis vectors are chosen as eigenvectors of LTL.

Choosing the regularization parameter, λ, is a tradeoff between the variance

and bias of the solution. Setting λ = 0 results in a solution with zero bias but

dominated by large variance due to the contribution of small eigenvalue terms in

the eigenvector expansion. In the opposite limit, a large value of λ results in a
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very smooth solution in which eigenvectors with small eigenvalues are suppressed

but at the cost of significant bias. The ideal choice of regularization parameter is

the one that should balance these two effects. An intuitive method for choosing

the regularization parameter is based on the chi-squared-like statistical properties

of the model residuals,

χ2(nndf = m− n) ≃
(

Υe −Kφ̂
)T

V−1
(

Υe −Kφ̂
)

, (3.55)

where n is assumed to be sufficient to fully describe the true spectrum and m

is sufficiently small for the validity of the gaussian approximation. Figure 3.16

illustrates the unfolded spectrum for a simulated source for three values of the

regularization parameter.

3.6.3 Correction Factors Method

When K is constructed as an n-by-n matrix and is nearly diagonal, the correction-

factors method is an intuitive iterative technique that provides a non-parametric

estimate for the true spectrum. In this method for each iteration k, a diagonal

scaling matrix Ck is calculated,

Ck,ii =
φ̃k,i

∑

jKijφ̃k,j
, (3.56)

where φ̃k is a “smoothed” model for the true spectrum. A solution vector, φ̂k,

for iteration k is evaluated as

φ̂k = CkΥe. (3.57)

Since the components of Υe,i are not correlated, the φ̂k are statistically indepen-

dent and the covariance matrix for φ̂k is diagonal,

Vφ,k = CkVCT
k . (3.58)
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To remove rapidly varying components of the solution vector φ̂k which cor-

respond to the eigenvectors with small eigenvalues, the solution is smoothed by

fitting a parametric function (typically a power-law). The resulting smooth spec-

tral model, φ̃k+1, is then used to calculate the scaling matrix Ck+1 for the next

iteration. The choice of fitting function can be partially guided by the results of

the forward-folding method. As long as φ̃0 is a sufficiently smooth function, the

procedure converges to a solution which is insensitive to the first iteration choice.

Therefore a power-law function with Γ = 2.5 is adopted for φ̃0. The refinement

of the solution is continued until the chi-squared-like statistic calculated from the

residual between the measurement vector and the folded flux distribution,

χ2
k =

(

Υe −Kφ̂k

)T

V−1
(

Υe −Kφ̂k

)

, (3.59)

converges to a constant value, which typically occurs after 2–3 iterations.

The correction-factors method is not fully model-independent as the choice

of smoothing algorithm can significantly influence the solution. The choice of

smoothing function acts as a form of regularization by restricting the space of

allowed solutions. Based on practical application of this method to spectra that

can be described by a power-law with curvature, it has been found that when

the smoothing function matches the true distribution, the method has minimal

bias and converges rapidly to the correct solution. Even though there is no

rigorous mathematical foundation for this method, its simplicity has made it

a frequently favored technique for spectral reconstruction of VHE gamma-ray

sources. Figure 3.17 illustrates the application of the correction-factors method to

the reconstruction of a simulated source with a power-law spectrum with Γ = 3.0.

The spectral solution is found to converge after two iterations and has a relative

bias . 1 % across all energies. In general when the smoothing function differs

from the true spectrum, the solution will tend to be biased toward the chosen
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Figure 3.17 Left: The reconstruction of the spectrum of the simulated source

with Γ = 3.0 and F0 = 3 × 10−3 m−2 s−1 TeV−1 at E0 = 1 TeV (shown as

black line) with the correction-factors method. Starting from an initial spectral

solution with Γ0 = 2.5, the spectral solution after one (red squares) and two

(green triangles) iterations is shown. Right: Relative bias of the flux estimates

shown in the left figure.

smoothing function.
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CHAPTER 4

Gamma-ray Signatures of Self-annihilating Dark

Matter

WIMPs are a well-motivated generic class of particles for astrophysical DM. The

self-annihilation of WIMPs in the regions of high DM density is expected to

produce a gamma-ray signature with several distinctive features that carry infor-

mation about both the nature of the DM particle and the DM spatial distribution.

The detection of one or more of these features in a gamma-ray source would signif-

icantly aid the discrimination of the DM signal from astrophysical backgrounds

and potentially allow an unambiguous identification of the WIMP. This chap-

ter discusses the general characteristics of the gamma-ray annihilation signal in

different astrophysical environments and presents the estimation of the gamma-

ray flux originating from self-annihilation of WIMPs. In these calculations the

greatest uncertainty in the flux prediction arises from the poorly determined DM

density distribution. This distribution is not directly observable and can only be

constrained by CDM simulations and stellar and gas kinematics. This chapter

summarizes available data and various theoretical motivations for DM dynamics

to predict the gamma-ray flux for a given source. These predictions will be con-

fronted with observational results in Chapter 5 to constrain the viable regions of

the WIMP parameter space.
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4.1 DM Annihilation Signal

The differential flux of gamma-rays from WIMP self-annihilation per unit solid

angle from a DM halo with a radial density profile, ρ(r), is given by

dφ(ψ, E)

dEdΩ
=

[〈σv〉
2

dN(E,mχ)

dE

1

m2
χ

]

× 1

4π

∫

ρ2(s,ψ) ds, (4.1)

where ψ is the line-of-sight direction, 〈σv〉 is the thermally averaged product of

the total self-annihilation cross section and the velocity of the WIMPs, mχ is

the WIMP mass, dN(E,mχ)/dE is the differential gamma-ray yield per WIMP

annihilation, and s is the line-of-sight distance along the direction ψ. The term

in square brackets depends exclusively on the WIMP physics model. The second

term depends on the spatial distribution of DM along the line of sight. The

density profile may depend on the WIMP physics model but is observationally

constrained by astrophysical measurements.

It is customary to isolate the astrophysical factor of Equation 4.1 as,

dJ(ψ)

dΩ
=

1

4π

∫ ∞

0

ρ2(s,ψ)ds. (4.2)

The finite angular resolution of IACTs is accounted for by integrating over a

circular region of radius θ with solid angle ∆Ω = 2π (1 − cos θ),

J(ψ,∆Ω) =
1

4π

∫

∆Ω

dΩ

∫

dP (ψ′ −ψ)

dΩ′
dΩ′

∫ ∞

0

ρ2(s,ψ′)ds, (4.3)

where dP (ψ′−ψ)/dΩ′ is the gamma-ray PSF of the instrument (see Section 3.4).

Because the self-annihilation flux scales as the square of the dark matter density,

the contribution to the observed flux is dominated by the core of the DM halo

where the DM density is greatest. In the limit when the characteristic size of

the source, R, is much smaller than the PSF of the instrument (R/D ≪ θ), the

source is point-like and the value of J is given by

J(ψ = ψ0) ≃
1

D2

∫ R

0

ρ2(r)r2dr, (4.4)
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where ψ0 and D are the direction and distance to the halo center. We adopt the

convention of characterizing J through a dimensionless quantity J̃ = J/(ρ2cRH)

in which J is normalized to the product of the square of the critical density and

the Hubble radius, ρ2cRH = 3.832 × 1017 GeV2 cm−5.

4.2 WIMP Models

The particle physics component of the WIMP annihilation flux given in Equa-

tion 4.1 is

P(E) =
〈σv〉
2m2

χ

dN(E,mχ)

dE
. (4.5)

The natural value of 〈σv〉 ≃ 3 × 10−26 cm3 s−1 is determined by the requirement

to produce the observed DM relic abundance during the DM freeze-out process

in the early universe (Kolb & Turner, 1990). For WIMPs that annihilate at

the present time (z = 0) predominantly through s-wave processes, the thermally

averaged annihilation cross section is velocity independent and therefore has this

natural value. At the time of decoupling the WIMP particle was non-relativistic

with v/c ≃ 0.1. Self-annihilation of the WIMP particle in the present universe

occurs in gravitationally bound systems in which the kinetic energy is of the order

of the potential energy which requires v/c ≃ 10−3, a factor of hundred lower than

during freeze-out. Coannihilations of the WIMP with the other particle species of

similar mass as well as velocity-dependent terms in the annihilation cross section

can modify the annihilation cross section at z = 0 from its natural value. The

existence of coannihilation in the early universe will reduce 〈σv〉 at the present

day (Edsjö & Gondolo, 1997). The dependence of 〈σv〉 on velocity of the WIMP,

the Sommerfeld effect (Hisano et al., 2004), could potentially increase its value

by ∼ 10–100.
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Figure 4.1 Left: Gamma-ray yield for a WIMP with mχ = 316 GeV (solid

lines) and mχ = 1 TeV (dashed lines) annihilating through the channels bb̄ (black

lines), W+W− (red lines), τ+τ− (green lines). Annihilation yields were calculated

with the DarkSUSY package (Gondolo et al., 2004). Right: Comparison of

the gamma-ray annihilation yield for KK (black line) and neutralino (red line)

WIMPs with a mass mχ = 1 TeV. The neutralino spectrum was generated with

branching ratios to bb̄ and τ+τ− of 0.9 and 0.1 respectively. Branching ratios of

the KK WIMP were taken from Hooper & Profumo (2007).

The mass of the WIMP is currently constrained by accelerator measurements

(Bottino et al., 2003; Feng, 2010) which will be improved during ongoing operation

of LHC. In general, the low bound on the neutralino mass is particle model

dependent and varies from 8–30 GeV. The upper bound on mass of the WIMP

comes from unitarity limit and for a thermal relic it requires mχ . 124 TeV

(Griest & Kamionkowski, 1990). The energy range over which IACT instruments

are sensitive is well matched to the anticipated WIMP mass range.

The differential yield of gamma-ray photons per WIMP self-annihilation is a
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sum over final-state contributions,

dN(E,mχ)

dE
= 2bγγδ (E −mχ)

+
∑

i

bγiδ

(

E −mχ +
m2
i

4mχ

)

+
∑

i

bi
dNi(E,mχ)

dE
,

(4.6)

where bγγ, bγi, and bi indicate the branching fraction into specific final-state chan-

nels. The first two terms represent annihilations into mono-energetic photons

through either two or one photon channels. The last term is a sum over all chan-

nels that contribute to the continuum flux, which arises primarily from the decay

of π0 mesons produced in the hadronization of the fermion and boson final states.

The differential spectrum of the π0 decay component is relatively featureless and

similar for all channels. It falls exponentially at high energies terminating at

mχ where it is enhanced by internal bremsstrahlung from charged virtual and

final-state particles (Birkedal et al., 2005), resulting in an edge-like feature at

Eγ = mχ (see Figure 4.1). Decays into all quark and bosonic states differ only

slightly in the amplitudes of the π0 and internal bremsstrahlung components.

However, decay into τ leptons generates a significantly harder spectrum, due to

direct production of π0 mesons in processes such as τ± → π±π0ν. Branching ra-

tios to the various final states depend on the choice of a specific particle physics

model for the WIMP.

In this work two specific WIMP models are considered: the lightest neutralino

of SUSY (discussed in Section 1.3.3) and the Kaluza-Klein particle of UED (dis-

cussed in Section 1.3.4). The leading annihilations channels for neutralino DM

(for a review see Jungman et al. (1996)) are the two-body annihilation modes

to heavy fermion and boson final states: bb̄, tt̄, τ+τ−, W+W−, ZZ. Annihi-

lation to light fermions is helicity suppressed by a factor (mf/mχ)2. The an-

nihilation modes into mono-energetic photons, γγ and Zγ, are 1-loop processes

and thus significantly suppressed (branching ratios ∼ 10−2–10−3) as compared
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Figure 4.2 Gamma-ray spectrum of mSUGRA neutralino benchmark models I’,

J’, J* as defined in Bringmann et al. (2009) with a significant VIB component.

to the tree-level annihilation channels contributing to the continuum component

(Bergström & Ullio, 1997; Ullio & Bergström, 1998). At energies comparable to

the mass of the neutralino, an additional contribution to the neutralino spectrum

arises from virtual internal bremsstrahlung (VIB) (Bringmann et al., 2008). VIB

together with IB processes originate from scattering of virtual and final state

charged particles and results in 3-body annihilation modes. Although the phase

space for 3-body annihilation modes is reduced, the helicity suppression factor

is lifted for these processes. The contribution of VIB may lead to a significant

enhancement in the annihilation spectrum at energies close to mχ for specific

neutralino models (see Figure 4.2). Although the strength of the VIB signal is

highly model-dependent, the detection of this unique spectral feature would un-

ambiguously distinguish the neutralino self-annihilation signal from astrophysical

backgrounds.

One of the most theoretically favored candidates for the lightest Kaluza-Klein
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particle (LKP) is the first KK mode of the hypercharge gauge boson B(1) (Cheng

et al., 2002). Because the B(1) is a vector boson, annihilation to light fermions

is not helicity suppressed and the dominant annihilation channels of the LKP

are to charged lepton pairs (20% per generation). Due to the contribution of

IB associated with charged lepton production, the LKP spectrum is significantly

enhanced at high energies (Bergström et al., 2005). As illustrated in Figure 4.1,

the LKP annihilation spectrum is considerably increased near the endpoint as

compared to the neutralino of the same mass. The total annihilation cross section

is related to the mass by 〈σv〉 ≃ 3 × 10−26 (0.8 TeV/mB(1))
2 cm3 s−1 (Servant &

Tait, 2003) which constrains the mass to the range 500–800 GeV.

4.3 Spherically Averaged DM Density Profile

The density profile of a DM halo is determined by a number of astrophysical pro-

cesses such as the initial gravitational relaxation of DM, interaction of DM with

baryonic matter, and potentially the weak interactions of WIMPs with them-

selves and other particles. High resolution N-body simulations that model the

hierarchical formation of CDM halos through gravitational interactions have been

a highly successful method for studying the properties of DM halos. These simu-

lations have shown that the spherically-averaged (smoothed) DM distribution in

DM halos is well described by a universal halo profile that is independent of halo

virial mass, the mass within the virial radius defined by

mvir = 4π

∫ rvir

0

ρ(r)r2dr = 200ρc
4π

3
r3vir. (4.7)

A widely adopted parameterization for the DM halo density is the Navarro, Frenk,

& White (NFW) profile (Navarro et al., 1997),

ρ(r) = ρs

(

r

rs

)−1(

1 +
r

rs

)−2

, (4.8)
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Figure 4.3 Top: Comparison of the radial density normalized to the density

at the scale radius of the NFW (black), Hernquist (red), Burkert (green), and

Einasto (blue) profiles. Bottom: Line-of-sight integral (J) normalized to the

total gamma-ray luminosity as a function of the angle ψ from the center of the

halo shown for the four density profiles in the top figure. The calculation assumes

that a halo is placed at a distance D = 100rs from the observer and the PSF is

gaussian with an RMS of 0.05 deg.
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where rs is the scale radius and ρs is the characteristic density. For r ≪ rs,

the NFW profile has a central power-law cusp with ρ(r) ∝ r−1, and at large

radii (r ≫ rs) it declines as ρ(r) ∝ r−3. The line-of-sight integral J is primarily

sensitive to the behavior of the density profile in the cusp region (r < rs). However

CDM simulations currently have a limited capability to model the distribution of

DM on these scales due to numerical resolution effects. More recent computations

have found that DM halos can be better fit with the Einasto profile (Navarro et al.,

2004; Graham et al., 2006; Navarro et al., 2010),

ρ(r) = ρs exp

[

− 2

α

((

r

rs

)α

− 1

)]

(4.9)

with α ≃ 0.17. This profile is characterized by an inner slope (γ(r) =

−d ln ρ(r)/d ln r) that asymptotically approaches zero toward the center produc-

ing a finite central density at r = 0. Figure 4.3 illustrates that over intermediate

scales (r ∼ rs) the NFW and Einasto profiles are similar and therefore for a

distant DM halo (D/rs & 100) they produce nearly identical gamma-ray lumi-

nosity profiles. Because all of the sources considered in this work are distant, the

NFW profile is adopted for all subsequent calculations of the gamma-ray lumi-

nosity. For the purpose of modeling the gravitational potential (Section 4.6.1),

the Hernquist profile (Hernquist, 1990),

ρ(r) = ρs

(

r

rs

)−1(

1 +
r

rs

)−3

, (4.10)

is also considered which has the same asymptotic behavior at small radii (r ≪ rs)

as the NFW profile and therefore results in a similar gamma-ray luminosity profile

when observed at large distances. These two profiles differ significantly, however,

for computations of DM halo masses.

Observations of low surface brightness (LSB) galaxies indicate inner slopes

that are significantly shallower than one (de Blok et al., 2001; de Blok, 2005),
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which motivated the empirical cored Burkert density profile (Burkert, 1995)

ρ(r) = ρs

(

1 +
r

rs

)−1
(

1 +

(

r

rs

)2
)−1

. (4.11)

The Burkert profile generally provides poor fits to the profiles of simulated halos

(Merritt et al., 2006). The observed discrepancy between simulations and obser-

vations may be indicative of processes that have modified the distribution of DM

in the central regions of LSB galaxies such as gravitational interactions between

baryons and DM or DM self-interactions. Figure 4.3 shows that the Burkert

DM density profile results in a gamma-ray emission profile that is significantly

more extended than that predicted for the NFW halo. The applicability of the

theoretically predicted CDM density profiles which assume only gravitational in-

teractions of DM is perhaps best satisfied in the dSph systems. The baryonic

mass in these galaxies is a negligible perturbation to the DM potential even in

the central regions (r ≪ rs) and the pair interaction of stars indicate collisional

relaxation times significantly larger than the Hubble time.

The density profiles of simulated DM halos are commonly characterized by

their virial mass mvir and concentration c = rvir/rs which are related to ρs and

rs (Equation 4.7). Using a sample of simulated DM halos with masses 1011–1014

h−1 M⊙, Bullock et al. (2001) found that the median halo concentration at z = 0

is correlated with virial mass and can be well approximated by the expression,

c = 9

(

mvir

1.5 × 1013h−1M⊙

)−0.13

, (4.12)

with a scatter of ∆ log c ≃ 0.14.
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4.4 DM Density Fluctuations Boost

A generic prediction of CDM simulations is that the DM density profile is not

smooth but enriched with density fluctuations, substructures, with characteristic

spatial scales smaller than rs. These substructures may significantly enhance the

DM annihilation flux as compared to that predicted for a smooth halo. Numerical

simulations find that these substructures are gravitationally isolated and can be

well described by a power-law mass function dN/dM ∝ M−α with α ≃ 1.9–2.0

(Diemand et al., 2006; Springel et al., 2008a) at z = 0. The substructure mass

spectrum extends to a minimum halo mass, m0, which is set by the free streaming

and collisional damping length scales of the WIMP in the early universe. For

example, a neutralino WIMP with mass mχ = 100 GeV is predicted to have

m0 ≃ 10−6 M⊙ (Green et al., 2005). The abundance of these substructures at z =

0 depends on the fraction that survives tidal disruption during the hierarchical

merger and accretion processes.

The contribution of DM substructures to the gamma-ray flux is quantified

by scaling the line-of-sight integral over the smooth halo distribution, Js, by a

boost factor B such that J = Js (1 +B). CDM simulations can set a lower

limit on the boost factor by summing the annihilation luminosity from numer-

ically resolved substructures. High resolution simulations of Milky Way-mass

halos (M ≃ 1012M⊙) have shown a factor of two enhancement (B ≃ 1) to

the annihilation luminosity within the virial radius from resolved substructures

(Msub & 106 M⊙) (Diemand et al., 2007, 2008; Springel et al., 2008b). The contri-

bution of unresolved substructures could significantly increase the boost factor.

However, numerical and analytical studies have shown that the boost factor is

sensitive to the extrapolation of the mass function to the cutoff mass scale, m0,

as well as the assumed concentration-mass relation for small halo masses. For
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example a substructure mass function with α = 2.0 and a mass-concentration

relationship of the form of Equation 4.12 results in a gamma-ray luminosity per

decade of substructure mass that rises with decreasing mass thus making the

exact value of m0 critical to the determination of the boost factor. Strigari et al.

(2007) obtain an upper bound on the boost factor of B ≃ 100 by using the mass-

concentration relationship for field halos from Equation 4.12 and extrapolating

the substructure mass function to m0 ≃ 10−5 M⊙ with α = 1.9. A more detailed

calculation by Martinez et al. (2009) that considered different parameterizations

for the substructure mass-concentration relation as well as the tendency of tidal

effects to diminish the gamma-ray luminosity of substructures found boost factors

in the range 1 . B . 10.

4.5 Baryonic Effects

The gravitational influence of baryonic matter during the hierarchical formation

of a DM halo is expected to significantly affect the DM distribution in the regions

where mass density of baryons is comparable or larger than the DM density, for

example the centers of galactic nuclei or globular clusters. Unlike DM, baryons

can effectively dissipate their energy through radiative processes and baryon-

baryon interactions and thus concentrate in the core of the DM halo. During

this contraction process and subsequent star formation, the baryons will tend to

modify the smooth density profiles predicted by CDM-only simulations as well as

the abundance and structural properties of DM substructures. The importance

of these effects is highly dependent on the evolutionary history of a DM halo and

could alternatively enhance or diminish the annihilation signal.

The condensation of baryons in the halo center gravitationally compresses the

DM distribution on large scales (comparable to rs) leading to an enhancement
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of the central DM density. The adiabatic compression effect was first modeled

analytically using adiabatic invariants by Blumenthal et al. (1986). In addition

to compressing the distribution of DM, baryons can also have the effect of heating

the central DM distribution through gas outflows driven by supernova feedback

(Mashchenko et al., 2006a) and dynamical friction from infalling gas clumps (El-

Zant et al., 2001, 2004). These processes have the ultimate effect of diminishing

the central DM density. The role of baryons in the evolution of DM halos has

been recently studied with simulations combining dissipationless DM particles

with a baryonic component composed of gas and stars (Gnedin et al., 2004;

Gustafsson et al., 2006; Scannapieco et al., 2009). A consistent finding in these

simulations is that the contraction of baryons significantly increases the central

concentration of the DM halo and produces an approximately isothermal DM

cusp with γ ≃ 2.0 with some evidence for flattening on small scales (much smaller

than rs) (Romano-Dı́az et al., 2008, 2009; Tissera et al., 2010). The presence of

a baryonic component has also been found to significantly reduce the survival

probability of DM substructures (Romano-Dı́az et al., 2010).

In the centers of galactic nuclei where collisional effects occurring on the two-

body relaxation timescale are important, the DM halo could be further altered

by the presence of a central black hole or high stellar densities. The adiabatic

compression of DM in the core of a halo through the slow growth of a central

black hole has been suggested as a mechanism for increasing the flux from DM

self-annihilation (Gondolo & Silk, 1999). However, the magnitude of this effect

depends strongly on the ratio of the initial and final masses of the black hole,

its initial alignment with the center of the DM halo, and the merging history

of the galactic nucleus (Ullio et al., 2001). Merritt & Cruz (2001) have shown

that a typical merger event between black holes of comparable mass destroys

cuspy density profiles. The effect of gravitational scattering of DM particles by
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infalling baryons, stars and gas, in the central regions of galactic nuclei may also

be significant. The transfer of momentum to the dark matter component in these

interactions should lead to the partial evaporation of DM from the center of the

galaxy. The ejection of DM particles through the gravitational slingshot process

in the vicinity of binaries will further enhance the DM outflow from the centers

of galactic nuclei. In general the prediction of the gamma-ray flux from DM self-

annihilation in the astrophysical environments where the interaction of DM with

baryons is important is not well determined due to strong dependence on initial

conditions and the history of the sources.

4.6 DM Density Profile Modeling

Studying the the distribution of stellar positions and velocities in an astrophysical

system is a well-established method for inferring the properties of the underlying

gravitational potential and the mass distribution from which it originates. In the

case of the dSphs, the gravitational potential is dominated by DM and such an

analysis can therefore provide strong constraints on the distribution of DM in

these systems. These constraints can be used to derive bounds on the line-of-

sight integral, J , and thus the expected DM gamma-ray annihilation flux from

these objects. It is customary to describe the dynamics of a stellar system by

its distribution function (DF), f(x,v, t), which is the probability to find a star

in the infinitesimal phase space element centered at (x,v) at the time t. In the

regime where stellar collisions are negligible, which is applicable to the dSphs,

the time-evolution of the DF is governed by the collisionless boltzmann equation,

∂f

∂t
+ v

∂f

∂x
+
∂ψ

∂x

∂f

∂v
= 0, (4.13)
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where ψ is the negative gravitational potential (ψ(r) ≥ 0) satisfying Poisson’s

equation, ∇2ψ = −4πGρ. According to Jeans’ theorem (Binney & Tremaine,

1987), a steady-state solution of the collisionless boltzmann equation (∂f/∂t = 0)

can only depend on the phase-space coordinates through integrals of motion of

individual stars. In a spherically symmetric system, the integrals of motion are

the binding energy per unit mass, E = ψ(r)−v2/2, and the length of the angular

momentum vector per unit mass, L = |L|, and therefore an arbitrary f(E,L)

represents a general solution of Equation 4.13.

Observational constraints on the dSph systems allow only a subset of the

phase space coordinates to be measured for each star: the projected distance, R,

from the dSph center and line-of-sight velocity, vz. The observed distribution of

positions and velocities can be used to construct a dynamical model for the dSph

which is a function of a set of free parameters, θψ, of the gravitational potential.

Two parameterizations for the DM potential for which the corresponding density

profiles were given in Section 4.3 are the Hernquist potential,

ψ(r) = ψ0
1

1 + r/rs
, (4.14)

where ψ0 = 2πGρsr
2
s and the NFW potential,

ψ(r) = ψ0
ln (1 + r/rs)

r/rs
, (4.15)

where ψ0 = 4πGρsr
2
s . Because these parameterizations for the potential have

only two free parameters, it is convenient to define a dimensionless unit system

in which the potential scale radius, rs, and potential amplitude at the origin, ψ0,

are set to one.

A technique for modeling the gravitational potential that has been extensively

studied in the context of dSphs ( Lokas, 2002;  Lokas et al., 2005; Mashchenko et al.,

2006b; Strigari et al., 2007, 2008b) is to compare the moments of the velocity
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distribution in bins of projected radius with the solutions of the two lowest order

Jean’s equations for a spherically symmetric system (Binney & Tremaine, 1987).

This system of equations is not closed and requires as an input a model for the

stellar velocity anisotropy parameter, β(r) = 1 − σ2
||(r)/σ

2
⊥(r), that characterizes

the relative velocity dispersions along the radial and tangential directions. A

significant disadvantage of this method is that the data must be binned (assuming

large statistics) and information about the velocity distribution is necessarily

reduced in this process. This approach can also result in unphysical DF solutions

in some regions of phase space.

An alternative approach for modeling the gravitational potential is to derive

the line-of-sight velocity distribution (LOSVD), f(R, vz;θψ), which is the p.d.f.

to detect a star at a projected distance R with line-of-sight velocity vz. The

LOSVD is obtained by a marginalization of the six-dimensional DF into the two-

dimensional space of the observables in the presence of the spherical symmetry.

A significant advantage of this method is that it operates on unbinned data and

is therefore well-suited for small data samples. The method does not escape from

the inherent uncertainties associated with the unknown distribution of individual

stars in the (E,L) parameter space. However, it allows systematic exploration of

the effects of these distributions on the parameters of the gravitational potential.

Section 4.6.1 outlines a method for calculating f(R, vz;θψ) through integration

of orbits and ergodization. A method for solving for the parameters of the DM

potential from the stellar velocity data set using standard likelihood statistics is

then presented in Section 4.6.2. The application of these methods to the stellar

velocity data sets for five dSphs observed by VERITAS is presented in Chapter 5.
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4.6.1 Orbit Modeling

A model for the LOSVD of a stellar system can be constructed from a super-

position of single-orbit distributions with fixed E and L. Using the unit system

defined in terms of the two free parameters of the gravitational potential (rs and

ψ0), all physical quantities are unitless, and the binding energy and angular mo-

mentum are measured in units of ψ0 and ψ
1/2
0 rs respectively and are restricted

to the ranges [0, 1] and [0,∞]. The orbit of a star in a spherically symmetric

potential is determined by four integrals of motion: the binding energy E and

the three components of the angular momentum vector, L. The vector n = L/|L|
defines the orbital plane in which the star travels. The trajectory of motion in

polar coordinates ρ and φ is given by

φ̇ =
L

ρ2
,

ρ̇ = ±
√

2 (ψ(ρ) − E) − L2

ρ2
= ±vρ(ρ, E, L).

(4.16)

For a gravitationally bound star, the motion of the star occurs between an inner

radius ρmin (pericenter) and an outer radius ρmax (apocenter) which are the points

along the orbit at which ρ̇ = 0. The travel time between the inner and outer radii

is

Υ (E,L) =

∫ ρmax

ρmin

dρ

vρ(ρ, E, L)
. (4.17)

Figure 4.4 illustrates the value of the radial travel time for bound orbits in the

(E,L) plane. At each binding energy, the angular momentum of bound orbits

is constrained to be less than Lmax(E), the angular momentum of a circular

orbit (ρmin = ρmax). Contours of constant orbital apocenter (pericenter) distance

correspond to approximately vertical (horizontal) lines in the (E,L) plane.

The six-dimensional phase space distribution of a single star traveling in the

124



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(L
)

1
0

lo
g

­3

­2.5

­2

­1.5

­1

­0.5

0

0.5

1

1

10

210

310

(E)maxL

=
0

.1
m

a
x

ρ

=0.01
min

ρ

=
1

0
m

a
x

ρ

=
1

m
a

x
ρ

=0.1
min

ρ

=1
min

ρ

Figure 4.4 Radial travel time of orbits in the NFW potential as a function of

binding energy and angular momentum. Dashed (dotted) lines indicate isocon-

tours of apocenter (pericenter) distance. Shown as a solid curve is the function

Lmax(E), which is the angular momentum of a circular orbit with binding energy

E.
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spherical potential is

f(x,v, t;E,L) = δ(x− x(t;E,L))δ(v − v(t;E,L)) (4.18)

where the position and velocity of the star as a function of time, x(t;E,L) and

v(t;E,L), are determined by integrating the equations of motion (Equation 4.16).

The p.d.f. as a function of time for R and vz is obtained by marginalizing Equa-

tion 4.18 over the unknown orbital parameters: the orientation of the orbital

plane n and the initial orbital phase φ0. To obtain the time-independent p.d.f for

R and vz, an ergodization is performed in which the probability to find a star at

a given point along the trajectory is weighted by the relative time dt/Υ the star

spends in a given region of the parameter phase space. The p.d.f. of the star in

the observables R and vz as derived in Vassiliev & Wood (2010) is

fR2,vz(R, vz;E,L) =
1

4πΥ(E,L)
[

∫

D(R,vz ,E,L)

dρF (ρ,R, vz, E, L) +

∫

D(R,−vz ,E,L)

dρF (ρ,R,−vz, E, L)

]

,

(4.19)

where the subscript on f denotes that the model is a p.d.f. in R2 and vz and the

function F is defined as

F (ρ,R, vz, E, L) =

1

ρ
√

ρ2 −R2
vρ(ρ, E, L)−1





R2L2

ρ4
−
(

vz −
√

ρ2 −R2

ρ
vρ(ρ, E, L)

)2




−1/2
(4.20)

and the integration domain D(R, vz, E, L) satisfies the following set of inequali-

ties,

D(R, vz, E, L) =



























∣

∣

∣

∣

∣

vz −
√

ρ2 −R2

ρ
vρ(ρ, E, L)

∣

∣

∣

∣

∣

≤ RL

ρ2

R ≤ ρ ≤ ρmax(E,L) if R > ρmin(E,L)

ρmin(E,L) ≤ ρ ≤ ρmax(E,L) if R < ρmin(E,L)

.

(4.21)
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Figure 4.5 LOSVD, fR2,vz(R, vz), for orbits in the NFW potential with E = 0.5

and L/Lmax(E) equal to 0.99 (upper left), 0.50 (upper right), 0.10 (lower

left), and 0.01 (lower right).

Figure 4.5 illustrates the LOSVD for different orbits with fixed binding energy and

different values of angular momentum encompassing orbits from nearly circular

to nearly radial. These distributions are characterized by two caustic structures

with one over square-root singularities.

The LOSVD for the ensemble of stars in a dSph is determined by a final

marginalization of the single-star LOSVD given in Equation 4.19 over the density

of stars in (E,L) space, N(E,L). The N(E,L) of a stellar system is determined

by a number factors including the initial conditions of its formation, its assembly

history, and in the case of the dSphs their interaction with the tidal field of the
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Milky Way. For collisionless systems such as the dSphs, N(E,L) remains constant

in the absence of significant merger events or ongoing star formation. However,

interactions with the external gravitational potential of the Milky Way can slowly

affect N(E,L) through the stripping of stars with small binding energies and tidal

heating effects. Although in principle any arbitrary distribution in (E,L) space

is possible, the distribution of the gas from which the stars originally formed is

expected to produce a relatively flat N(E,L) distribution with no characteristic

scales other than characteristic scales of the potential itself. A simple model for

the N(E,L) is one in which all orbital energies with apocenter distances less than

a tidal radius rt are equally probable,

N(E,L) = N0







Lmax(E)−1 ρmax(E,L) < rt

0 ρmax(E,L) > rt
, (4.22)

and N0 is a normalization coefficient defined so that N(E,L) satisfies

∫ 1

0

∫ Lmax(E)

0

N(E,L)dEdL = 1. (4.23)

It is the goal of this study to show that small variations in N(E,L) do not lead to

large variations in the parameters of the gravitational potential. Once N(E,L)

is chosen the p.d.f. in (R, vz) space is determined by

fR2,vz(R, vz) =

∫ 1

0

∫ Lmax(E)

0

N(E,L)fR2,vz(R, vz;E,L)dLdE, (4.24)

and expressed in a scale invariant form it is

F(R, vz) = 2R2|vz|fR2,vz(R, vz). (4.25)

Figure 4.6 illustrates the scale-invariant LOSVD calculated for the NFW and

Hernquist potentials with the energy distribution given in Equation 4.22. The

figure shows distributions for the systems with rt ≫ rs in which case the LOSVD

is universal and independent of parameters of the gravitational potential ψ0 and
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Figure 4.6 Scale invariant LOSVD, F(R, |vz|), of the NFW (left) and Hernquist

(right) potentials.

rs. In more realistic scenarios when rt is of order rs this universality will be

broken.

4.6.2 Likelihood Computation

The goal of the DM density profile modeling is to calculate constraints on the

parameters of the gravitational potential θψ = {ψ0, rs} from the spatial distribu-

tion and velocities of stars. A stellar velocity data set consists of N stars each

with a set of measurements Di = {Ri, vz,i, σz,i} corresponding to the projected

distance R and a line-of-sight velocity vz with associated velocity measurement

error σz. The velocity measurement error modifies the intrinsic LOSVD as

F̃(R, vz, σz;θF) = |vz|
∫

dv′z
v′z

F(R, v′z;θF)
1√

2πσz
exp

[

− (vz − v′z)
2

2σ2
z

]

, (4.26)

where θF indicates free parameters of the LOSVD not associated with the grav-

itational potential (e.g. the tidal radius rt). The function F̃(R, vz, σz;θF) is

universal and once computed can be used to analyze any data set by scaling its

arguments by the parameters of the potential, rs and
√
ψ0.
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The log likelihood function for the data as a function of the parameters θψ is

represented in terms of the scale-invariant modified LOSVD as

lnL(D1, . . . , DN |θψ = {rs, ψ0},θF) =
N
∑

i=1

F̃
(

Ri

rs
,
vz,i√
ψ0

,
σz,i√
ψ0

;θF

)

, (4.27)

where the physical parameters θF are also scaled by the parameters of the grav-

itational potential. In general maximizing the log likelihood function is a non-

linear optimization problem which is computed in the following discussions using

numerical techniques.

4.7 Review of Observational Targets

Because the gamma-ray signature of the WIMP is proportional to the square of

the local density, the spatial scales that contribute to the total gamma-ray flux

from a DM halo are much smaller than the spatial scales contributing to the halo

mass. In some astrophysical objects such as dSphs, the density of DM on these

small spatial scales is determined by the formation and evolution history of the

DM halos and to a significantly lesser degree by the dynamics of the interaction of

DM with baryonic matter. In other systems such as galactic nuclei and globular

clusters, the evolution of DM on these small spatial scales is typically driven by

its interaction with baryonic matter which dominates the gravitational potential.

The influence of baryons in these systems in the form of dense stellar populations,

molecular clouds, and central black holes could potentially lead to a much higher

central DM concentration than that inferred from the large-scale DM distribution

and thus substantially enhance the annihilation signal. Therefore, it is attractive

to consider sources for observation that represent a diverse set of astrophysical

environments that could boost the gamma-ray luminosity.
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Table 4.1. Summary of the observational properties of the five observed dSphs.

Name α [J2000.0] δ [J2000.0] LV [L⊙] rh [pc] Distance Ref.

[kpc]

Draco 17h20m14.4s 57◦54′54′′ 2.7± 0.4× 105 221± 16 76± 5 1,2

Ursa Minor 15h08m41.1s 67◦12′36′′ 2.0± 0.9× 105 150± 18 66± 3 3

Bootes I 14h00m03.6s 14◦30′42′′ 3.0± 0.6× 104 242+22
−20 62± 3 2,4

Willman 1 10h49m22.3s 51◦03′04′′ 1000+660
−670 25+5

−6 38± 7 1,5

Segue 1 10h07m03.2s 16◦04′25′′ 335+235
−185 29+8

−5 23± 2 1,6

References. — (1) Martin et al. (2008); (2) Bonanos et al. (2004); (3) Walker et al.

(2009); (4) Dall’Ora et al. (2006); (5) Willman et al. (2005); (6) Belokurov et al. (2007)

4.7.1 Dwarf Spheroidal Galaxies

The dSph galaxies of the Milky Way represent one of the most attractive target

classes for indirect DM searches due to their proximity and high DM content.

Because the gravitational potential of these systems is dominated by DM rather

than baryons, studies of their stellar kinematics can be used to set relatively

robust constraints on the value of the line-of-sight integral (J) over DM distri-

bution (see Section 4.6). Furthermore the absence of any gas or ongoing star

formation in the majority of these systems reduces the likelihood for confusion

with gamma-ray emission from standard astrophysical processes. With the addi-

tion of systems discovered by the Sloan Digital Sky Survey (SDSS), the number of

known dSph has recently grown to more than 20 (Tolstoy et al., 2009). The ma-

jority of these newly discovered systems fall in the class of ultra-faint dSphs with

extremely low luminosities. Five dwarf galaxy systems were selected for observa-
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tion by VERITAS. The observational properties of these systems are summarized

in Table 4.1.

The Draco dSph is one of the most frequently studied objects for indirect

DM detection (Baltz et al., 2000; Tyler, 2002; Evans et al., 2004; Sánchez-Conde

et al., 2007; Strigari et al., 2007, 2008b; Bringmann et al., 2009). It has an

approximately spherically symmetric stellar distribution (Irwin & Hatzidimitriou,

1995) with total luminosity of the order of 105 L⊙ (Piatek et al., 2002). The

large spectroscopic data set available for this object (Wilkinson et al., 2004;

Muñoz et al., 2005; Walker et al., 2007) provides the best constraints on its

DM distribution profile relative to the other dSphs. Draco is consistent with an

old low-metallicity ([Fe/H] = −1.8 ± 0.2) stellar population with no significant

star formation over the last 2 Gyrs (Aparicio et al., 2001). Draco previously

has been observed at VHE energies by the STACEE observatory (Driscoll et al.,

2008), the Whipple 10m telescope (Wood et al., 2008), and the MAGIC telescope

(Albert et al., 2008).

The Ursa Minor dSph has a distance and inferred DM content similar to those

of Draco. There is no evidence of young or intermediate age stellar populations

in Ursa Minor (Shetrone et al., 2001). Photometric studies of this object have

found evidence for significant structures in the stellar distribution in the central

10’ (Bellazzini et al., 2002; Kleyna et al., 2003) and an extratidal stellar popu-

lation (Palma et al., 2003). These unusual morphological characteristics could

be evidence of possible tidal interaction with the Milky Way, velocity projection

effects along the line-of-sight, or the presence of fluctuations in the DM induced

gravitational potential (Kleyna et al., 2003). Ursa Minor was previously studied

at VHE energies by the Whipple 10m telescope (Wood et al., 2008).

The recently discovered dSph Bootes I (Belokurov et al., 2006) shows evidence
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for elongation of the stellar profile. N-Body simulations can not reproduce the

observed velocity dispersion without a dominant contribution from DM. In ad-

dition, modeling of the tidal interaction effects between Bootes I and the Milky

Way do not provide an adequate explanation for the elongation of this system

suggesting a non-spherically symmetric distribution of DM in the Bootes progen-

itor (Fellhauer et al., 2008). The estimates of the age of the stellar population

and metallicity suggest similarity with the old and metal-poor ([Fe/H] ∼ −2.3)

stellar distribution of M92 (Belokurov et al., 2006; Muñoz et al., 2006; Martin

et al., 2007). VHE observations for this object are reported in this dissertaion

for the first time and published in Acciari et al. (2010).

Willman 1 and Segue 1 are two of the faintest and least luminous dSph systems

known and belong to the new class of ultra-faint dSphs recently discovered by

the SDSS (Willman et al., 2005; Belokurov et al., 2007). The half-light radii

(rh ∼ 25 pc) and total luminosities (LV . 103 L⊙) of these two galaxies place

them in a region of parameter space overlapping with globular clusters (Belokurov

et al., 2007). Classification of these objects as dark-matter dominated galaxies is

primarily based on their large observed velocity dispersions (σ ≃ 4 km s−1), low

metallicities ([Fe/H] < −2), and significant metallicity spread (∼ 0.5 dex).

Due to its small mean velocity (v ≃ −14 km s−1), kinematic analysis of

Willman 1 is complicated by contamination with foreground Milky Way stars. An

unusual velocity distribution as well as an apparent extended morphology indicate

that Willman 1 may be tidally disrupted (Willman et al., 2010). However the

possibility of foreground contamination and small size of the stellar velocity data

set prevent a definitive conclusion regarding tidal effects. The low metallicity of

this system ([Fe/H] ∼ −2.1) is consistent with the observed trend of decreasing

metallicity for fainter dSphs (Siegel et al., 2008). VHE observations of Willman
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1 were previously reported by the MAGIC collaboration (Aliu et al., 2009).

As compared to Willman 1, the identification of Segue 1 as a DM-dominated

dSph and the measurement of its kinematic and morphological properties is more

certain due to a larger mean velocity (v ≃ 206 km s−1) relative to the foreground

Milky Way stars. Because it spatially overlaps with the Sagittarius stream, Be-

lokurov et al. (2007) initially argued that Segue 1 was an extended globular cluster

that had been formerly associated with the Sagittarius dSph. More recent anal-

yses of stellar kinematics and metallicities have indicated stronger support for

the hypothesis that Segue 1 is a DM-dominated dSph (Geha et al., 2009; Simon

et al., 2010). Niederste-Ostholt et al. (2009) found evidence for the existence of

an extended morphological structure, potentially tidal debris, within one degree

by applying an optimal filter analysis to the SDSS photometric data. Simon et al.

(2010) argue that these structures are not associated with Segue 1 but with the

Sagittarius stream.

4.7.2 Local Group Galaxies

M32 is the closest compact elliptical galaxy and may have formed in a merging

event between M31 and a low-luminosity spiral galaxy (Bekki et al., 2001) in

which the disk component of M32 was tidally stripped. Stellar kinematic data

strongly support the presence of a single supermassive compact object in the

center of the galaxy with a mass of 2–4× 106 M⊙ (Joseph et al., 2001). The core

of M32 has a relatively homogeneous stellar population with an intermediate

age of approximately 4 Gyr (Corbin et al., 2001; del Burgo et al., 2001). Lauer

et al. (1998) estimate M32’s core relaxation time scale to be 2–3 Gyr. Collisional

two-body relaxation of a stellar population around a black hole is analytically

predicted to result in a steady-state power-law stellar density profile with power-
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law index between 3/2 and 7/4 (Bahcall & Wolf, 1976). Optical and infrared

data indicate a stellar density profile compatible with a power-law index in the

range 1.4–1.9 at the resolution limit of 0.07 pc (Corbin et al., 2001; Lauer et al.,

1998). The condensation of baryons in galactic nuclei gravitationally compresses

DM halos. It is generically known that in a merger between two galaxies a

massive black hole binary could be formed. The coalesence of the comparable

mass black holes is predicted to deplete the central density by evacuating stars

and destroying any potential DM cusp in the galaxy core (Milosavljević et al.,

2002). Even if such an event occurred in M32, its short core relaxation time is

sufficient for the reformation of a dense stellar core in the nucleus of this galaxy.

Therefore the stellar density in the core of M32, in excess of 107 M⊙ pc−3 and the

highest known among nearby systems (Lauer et al., 1998), makes it a promising

candidate for the detection of DM annihilation.

By observing astrophysical systems capable of rapid evolution, one may be

able to overcome dynamical limitations on the WIMP annihilation rate, if it

is limited by the scattering of WIMPs into a very small annihilation region in

the galactic nucleus. M33 is remarkable for the small relaxation time, ∼3 Myr,

in its stellar nucleus of approximately 0.2 pc, which results from the high stellar

density, 5×106 M⊙ pc−3, and extremely low velocity dispersion, 21 km s−1, in this

region (Lauer et al., 1998). M33 is a low-luminosity, DM-dominated, bulgeless

spiral galaxy with a dark halo mass of approximately 5.1 × 1011 M⊙ (Corbelli

& Salucci, 2000). The mass of the black hole in its center is less than 1.5 ×
103 M⊙ (Gebhardt et al., 2001; Merritt et al., 2001). The stellar population in

the nucleus of M33 can be modeled by two bursts of star formation 2 and 0.5 Gyr

ago suggesting the possibility of a merger in the last ∼Gyr. However, due to

its rapid collisional relaxation time, M33 could have developed a core-collapsed

nucleus in the period since the last merging event. Though the effect of a merger
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Table 4.2. Summary of the observational properties of the three observed

globular clusters. The columns labeled rc and rh denote the core and half-mass

radii respectively.

Name α [J2000.0] δ [J2000.0] LV [L⊙] rc [pc] rh [pc] Distance [kpc] Ref.

M15 21h29m58.4s 12◦10′01′′ 4.0× 105 0.2 3.2 10.3± 0.4 1,2,3

M13 16h41m41.5s 36◦27′37′′ 2.6× 105 1.7 3.3 7.7 3

M5 15h18m33.8s 02◦04′58′′ 2.9× 105 0.9 4.6 7.5 3

References. — (1) van den Bosch et al. (2006); (2) Dull et al. (1997); (3) Harris (1996)

on the DM distribution in a galactic nucleus may depend on the ratio of the

masses of stellar populations in the cores of the merging galaxies and on the

ratio of the initial and final masses of the stars in the nucleus, the uniquely fast

relaxation time of this galaxy make it a favorable object for observations.

4.7.3 Globular Clusters

Although there is no observational evidence for the presence of significant DM in

globular clusters, the association of globular clusters and DM halos fits naturally

into the standard paradigm of hierarchical structure formation. In the primordial

formation scenario proposed by Peebles (1984), globular clusters are formed in

DM overdensities in the early universe and may therefore retain a significant

fraction of this primordial halo in the current epoch. Given that the extremely

dense stellar cores of globular clusters dominate the gravitational potential of

these systems, the observable effects of an extended DM halo may be minimal.

Moore (1996) argued that the presence of tidal tails in some globular clusters
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suggests that globular clusters are not embedded in DM halos. Recent simulations

(Mashchenko & Sills, 2005a,b; Saitoh et al., 2006) have challenged this picture,

showing that an extended halo may be compatible with the observable properties

of globular clusters, although much of the original halo mass could be stripped by

tidal interactions with the host galaxy. If a DM halo is present in globular clusters,

its central density could have been increased by several orders of magnitude

through the gravitational compression caused by the core collapse of the stellar

population. The observational properties of the three core-collapsed globular

clusters with high central stellar densities that were selected for observation by

VERITAS are summarized in Table 4.2.

The proximity and potentially high central DM density of M15 makes this

source particularly favorable for indirect DM searches. With a core radius of

∼0.2 pc and extreme central density in excess of 107 M⊙ pc−3 (Dull et al., 1997),

M15 is the prototype for the core-collapsed globular cluster. During core collapse,

the globular cluster is predicted to relax through stellar two-body collisions to

a power-law density profile that extends down to the smallest observable scales

(Binney & Tremaine, 1987). If M15 was originally embedded in a DM halo,

this evolutionary process must significantly compress the central DM distribution

and dramatically enhance the gamma-ray flux. However, the poorly understood

process of kinetic heating of DM in the core of the cluster by stars and hard

binaries could lead to a depletion of DM from this region. Quantitative evaluation

of these effects allows for large variations in the predicted gamma-ray flux. In

addition, astrophysical gamma-ray background fluxes may exist in the the central

regions of globular clusters due to the presence of the dense populations of the

milli-second pulsars (Bednarek & Sitarek, 2007). The Tucanae 47 globular cluster

which was detected recently by the Fermi satellite in the high-energy gamma-ray

regime (Abdo et al., 2009b) is the source compatible with this model.
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CHAPTER 5

Results

This chapter presents the data analysis of ten targets observed by VERITAS to

search for the annihilation signature of WIMPs. Section 5.1 describes the data

sets and data-quality selection criteria for the chosen targets (Section 4.7). Data

analysis was performed using several Monte Carlo data sets that were generated to

model the VERITAS observatory performance characteristics (Section 5.2) during

the different periods in which the observations were taken. Section 5.3 presents

the analysis of the data for each target under the hypothesis of a gamma-ray point

source with a power-law energy distribution. This analysis is used to derive both

integral and differential (energy-dependent) constraints on the gamma-ray fluxes.

The data analysis is further specialized to determine gamma-ray upper limits

using a model for the spectral and morphological features of the WIMP anni-

hilation signature discussed in Chapter 4. Section 5.4 describes the constraints

on the line-of-sight integral over the DM distribution for the five observed dSph

systems as derived from the published stellar kinematics data with the use of the

orbit modeling methodology (Section 4.6.1). Upper limits on the gamma-ray flux

from WIMP annihilations in each target are then presented in Section 5.5. The

constraints on the allowed parameter space of WIMP models are obtained from

the analysis of the data sets of the dSphs are presented in Section 5.6.
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Figure 5.1 Sky temperature measured by FIR0 (black), FIR1 (blue) and FIR3

(green) and L3 trigger rate (red) as a function of time for two runs from the

Segue 1 data set: 49739 (left) and 49923 (right). The run in the left panel is

representative of a run excluded on the basis of poor weather conditions.

5.1 Data

The data presented in this thesis were taken from 2007 to 2010. Table 5.1 sum-

marizes the observation epoch and total exposure time for each data set. During

the period of observations, the VERITAS instrument underwent two significant

modifications: a transition from 3- to 4-telescope operations in April 2007 and

change of the observatory configuration due to the relocation of telescope T1 in

Summer 2009. All observations were taken on clear moonless nights with the full

telescope array (three telescope prior to Apr 2007 and four afterwards). Each

data set is comprised of a set of discrete exposures, runs, that are generally

20 minutes long and taken while the array tracks a fixed position in right as-

cension and declination. The observing strategy used for all observations is the

wobble technique with an offset of 0.5◦ (Section 3.5).

A set of data-quality selection criteria was applied to each data set to remove
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Table 5.1. Summary of the observation period, total observation time, and

quality-selected observation time for each source.

Name Observation Exposure Quality-Selected Array

Period [hr] Exposure [hr] Configuration

Draco 2007 Apr-Mar 23.8 18.1 a,b

Ursa Minor 2007 Feb-May 24.6 18.2 a,b

Bootes I 2009 Apr-May 15.7 14.4 b

Willman 1 2007 Dec-2008 Feb 15.5 13.1 b

Segue 1 2009 Dec-2010 Mar 36.0 24.6 c

M5 2009 Feb-Mar 15.7 10.0 b

M13 2007 May-Jul 8.2 6.7 a

2010 May-Jul 11.2 9.4 c

M15 2010 Jun 6.9 6.9 c

M32 2008 Oct-2009 Nov 13.3 11.9 b

M33 2007 Nov-2008 Feb 14.8 12.4 b

Note. — (a) Three telescope (T1/T2/T3) array in pre-Summer 2009 geometrical

layout. (b) Four telescope array in pre-Summer 2009 geometrical layout. (c) Four

telescope array in post-Summer 2009 geometrical layout.
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observations affected by poor weather conditions and hardware-related problems.

The total exposure after data-quality selection is given in Table 5.1. The two pri-

mary criteria for the data-quality selection were the RMS temperature variations

measured by the far-infrared radiometers (FIRs) and the stability of the L3 trig-

ger rate.

The FIR system consists of a set of three far-infrared radiometers: a telescope-

mounted radiometer sensitive to 8–14 µm (FIR1), a static radiometer sensitive

to 8–14 µm (FIR0; installed Sep 2008), and a telescope-mounted radiometer

sensitive to 9.6–11.5 µm (FIR3; installed Sep 2008). The two telescope-mounted

radiometers are both aligned with the optical axis of the array while the static

radiometer points to a fixed position near zenith. The FIRs continuously record

the mean sky temperature averaged in their respective FoV (2.7 deg for FIR1 and

FIR3 and 6 deg for FIR0) every 10 seconds. Variations in the FIR temperature

are sensitive to changes in atmospheric conditions such as the passage of clouds

through the VERITAS FoV. The RMS temperature measured by FIR0/FIR1 and

FIR3 were required to be less than 0.3◦ C and 0.7◦ C respectively. Figure 5.1

shows an example comparison of the measured FIR temperature as a function of

time for runs passing and failing the data-quality selection criteria.

The L3 trigger rate provides a complementary data-quality diagnostic. With

the trigger settings in effect since Jan 2007, the L3 trigger rates under normal

observing conditions are 200–250 Hz (150–180 Hz) for four (three) telescope op-

eration. An abnormally low or variable trigger rate can indicate poor weather

as well as problems with the trigger or data-acquisition hardware. To derive the

data selection criteria for each run, events were binned in 1 minute intervals and

fit with a constant data rate. The reduced chi-squared of this fit is required to be

less than two to pass data selection. Generally changes in the FIR temperature
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are found to correlate well with changes in the L3 trigger rate (see Figure 5.1).

For data to be selected for further data analysis both stability of FIR temperature

and L3 rate were required over the duration of the run.

5.2 Detector Simulation

Simulations of gamma-ray showers provide a critical input to the ChiLA analysis

chain and are used to discriminate between gamma-ray and cosmic-ray events

(Section 3.2.3), estimate gamma-ray energy (Section 3.2.4), and generate an in-

strument response model (IRM; Section 3.4). The gamma-ray simulations used

for the analysis presented in this thesis were computed with the ChiLA simula-

tion chain which consists of three main components: the CORSIKA cosmic-ray

air shower package (Heck et al., 1998), an optical ray-tracing package (VSOptics)

(Fegan & Vassiliev, 2005), and a detector electronics simulation (VSElectronics).

CORSIKA is a publicly available Monte Carlo code1 that simulates extensive

air showers initiated by high-energy cosmic-rays and gamma-rays. A CORSIKA

extension module (Bernlohr, 2000) computes the Cherenkov light emitted by

charged shower secondaries. The latter two components of the simulation chain

are specific to VERITAS and were developed in conjunction with the ChiLA

analysis package.

Simulation data sets were derived from a single library of gamma-ray air

showers generated with CORSIKA version 6.502 and the atmospheric profile cor-

responding to the US Standard Atmosphere 1976 (US76). Gamma-ray energies

were sampled at a set of discrete values spaced equidistantly in logarithmic energy

between 31.6 GeV and 100 TeV with 16 energy bins per decade. Shower direc-

tions were sampled at eight zenith angles (0◦, 12◦, 19◦, 26◦, 34◦, 41◦, 49◦, 56◦) and

1http://www-ik.fzk.de/corsika/
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four azimuth angles (0◦, 90◦, 180◦, 270◦). All atmospheric cascades were computed

with the use of the geomagnetic field at the location of the VERITAS observatory

in Tucson, AZ, USA. Raytracing at each pointing was performed for eight offset

angles (ψ) between the primary photon direction and the optical axis of the ar-

ray (0◦ − 1.75◦ in steps of 0.25◦). A model of the VERITAS optical system (OS)

was created by starting from an ideal OS and adding random dispersions to the

focal length, position, spotsize, and misalignment angle of individual mirrors (see

Table 5.2 for the list of parameters used). The dispersions in the first three pa-

rameters were measured during the characterization of the VERITAS mirrors and

telescopes. The last parameter, distribution of misalignment angles, was tuned

so that the simulated PSF matched the average measured PSF of the VERITAS

telescopes after the introduction of the new mirror alignment technique (McCann

et al., 2010) which was applied to all telescopes prior to the 2009–2010 observing

season.

Three simulation data sets (A,B, and C) were generated to characterize the

configuration of VERITAS during three time periods spanned by the observations:

Jan 2007 – Jul 2008 (A), Sep 2008 – Jul 2009 (B), and Sep 2009 – Jul 2010 (C).

The first two data sets (A and B) were simulated with the configuration of array

of VERITAS telescopes prior to Summer 2009. The third data set (C) was

simulated with the the array layout after T1 was moved to a new position in

Summer 2009. Each data set was simulated with a different average PMT gain

(which determines DC/PE conversion factor) and set of telescope throughput

scaling factors. The parameters chosen for each data set are summarized in Table

5.3. The absolute PMT gain was estimated from the photostatistics analysis of

laser flashes (Section 3.1.2). A single value of DC/PE was chosen for each time

period that matched the measured average of all telescopes (see Figure 5.2).

As evident from Figure 5.2 significant variations of ∼20% in the absolute gain
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occurred during the period of the observations due to both the aging of the

PMTs as well as changes to the high-voltage settings. The telescope throughput

factor was used to correct for differences in the light collection yield of each

telescope. A throughput factor of one is assigned to a telescope that has a PMT

quantum efficiency, mirror reflectivity, and lightcone efficiency corresponding to

a set of canonical values that were established by direct measurement. The

images produced by the individual muons in the atmosphere can be used as a

calibrated source of Cherenkov light. A set of relative throughput scaling factors

was estimated from the analysis of muon images using the methodology described

in Fegan & Vassiliev (2007). Figure 5.2 shows the throughput scaling factor as a

function of time derived with this technique for each telescope relative to T3.

5.3 Point-Source Analysis

Each data set was analyzed under the hypothesis of a gamma-ray point source

with a power-law energy spectrum. For the detection of a weak source, VERI-

TAS sensitivity comes mostly from the relatively small range of energies within

which a VHE gamma-ray source can be well modeled with these spectral char-

acteristics. Two sets of gamma-ray selection analysis cuts, Standard and Soft,

optimized for the detection of a source with spectral index Γ = 2.5 and Γ = 3.5

respectively (see Section 3.3) were applied to the data. The maximum likelihood

method (Section 3.5.4) was used to analyze the residual counts distribution and

evaluate the significance of a gamma-ray source at the nominal position of each

target. The spatial counts model for each data set was constructed using the

IRM and the gamma-ray spectrum for which the analysis cuts were optimized.

Gamma-ray rates, gamma-ray rate upper limits, and significances obtained with

the maximum likelihood analysis are summarized in Table 5.4. No significant

144



MJD
54200 54400 54600 54800 55000 55200 55400

D
C

/P
E

3.5

4

4.5

5

5.5

6

6.5

Jan 2007­Jul 2008 Sep 2008­Jul 2009 Sep 2008­Jul 2009

MJD
54200 54400 54600 54800 55000 55200 55400

R
e

la
ti

v
e

 T
h

ro
u

g
h

p
u

t

0.7

0.8

0.9

1

1.1

1.2

Jan 2007­Jul2008 Sep 2008­Jul 2008 Sep 2009­Jul 2010

Figure 5.2 Left: Median DC/PE of T1 (black), T2 (red), T3 (green), and T4

(blue) as a function of MJD estimated from nightly laser runs using the photo-

statistics method over the period 2007–2010. Vertical lines indicate the three time

periods for which separate simulation data sets were generated. Right: Mov-

ing average over four days of the scaling throughput factor derived from muon

analysis and relative to T3 over the period 2007–2010. The correlated change of

the scaling throughput factors is caused by the recoating of mirrors on the T3

telescope. The steady growth of the throughput factor of T1 in the data set A is

also due to mirror replacement process occurring during this time period.
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Table 5.2. Parameters used to generate the model of the VERITAS optical

system. The FWHM and 68% containment diameter (θ68) of this model for a

simulated point-source at infinity and two field angles (ψ) is given.

Parameter Value

Mirror Focal Length [cm] 1200

Mirror Focal Length Dispersion [cm] 8.6

Mirror Tangential Alignment Dispersion [cm] 0.55

Mirror Normal Position Dispersion [cm] 1.0

Mirror Spot Size (90% Diameter) [cm] 0.51

Mirror Spot Size Dispersion [cm] 0.2

Simulated PSF Spotsize

θFWHM (ψ = 0◦) [deg] 0.061

θ68 (ψ = 0◦) [deg] 0.076

θFWHM (ψ = 1◦) [deg] 0.104

θ68 (ψ = 1◦) [deg] 0.120

Table 5.3. Absolute gain and telescope throughput scaling factors used to

generate each simulation data set.

Telescope Throughput Scaling

Data Set Epoch DC/PE T1 T2 T3 T4

A Jan 2007 - Jul 2008 4.7 0.9 0.9 1.0 0.95

B Sep 2008 - Jul 2009 4.3 0.97 0.88 1.0 0.95

C Sep 2009 - Jul 2010 5.3 0.95 0.9 1.0 0.95
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Table 5.4. Summary of gamma-ray rates, gamma-ray rate upper limits, and

significances for the Standard and Soft cuts analyses.

Name Standard Cuts Soft Cuts

Ra Ru.l.
b Sc Ra Ru.l.

b Sc

[min−1] [min−1] [σ] [min−1] [min−1] [σ]

Draco -0.010 ± 0.012 <0.017 -0.86 -0.043 ± 0.026 <0.030 -1.63

Ursa Minor -0.006 ± 0.010 <0.017 -0.56 -0.072 ± 0.024 <0.019 -2.88

Bootes I -0.009 ± 0.011 <0.017 -0.76 -0.060 ± 0.024 <0.022 -2.34

Willman 1 0.029 ± 0.019 <0.061 1.65 0.076 ± 0.039 <0.140 2.02

Segue 1 -0.000 ± 0.012 <0.024 -0.03 -0.025 ± 0.030 <0.045 -0.82

M5 -0.009 ± 0.009 <0.012 -0.91 -0.059 ± 0.022 <0.019 -2.43

M13 -0.025 ± 0.016 <0.019 -1.48 -0.077 ± 0.038 <0.039 -1.98

M15 0.030 ± 0.026 <0.074 1.21 0.009 ± 0.056 <0.116 0.17

M32 0.001 ± 0.017 <0.035 0.05 0.006 ± 0.038 <0.079 0.15

M33 -0.019 ± 0.015 <0.019 -1.23 -0.011 ± 0.037 <0.065 -0.31

aGamma-ray rate.

bGamma-ray rate 95% C.L. Upper Limit.

cStatistical significance.

147



Table 5.5. Summary of energy thresholds and upper limits on the gamma-ray

spectral energy density obtained with the Standard and Soft cuts integral

analyses. A power-law energy distribution with Γ of 2.5 and 3.5 was used for

the calculation of the energy threshold and flux upper limit of the Standard and

Soft cuts analyses respectively.

Name Standard Cuts (Γ = 2.5) Soft Cuts (Γ = 3.5)

Eth
a E2dF/dEb Eth

a Fth
b

[GeV] [erg m−2 s−1] [GeV] [erg m−2 s−1]

Draco 390 < 2.5× 10−9 215 < 6.4× 10−9

Ursa Minor 518 < 3.0× 10−9 281 < 4.8× 10−9

Bootes I 296 < 1.9× 10−9 170 < 3.2× 10−9

Willman 1 316 < 7.4× 10−9 175 < 2.6× 10−8

Segue 1 255 < 2.2× 10−9 145 < 5.3× 10−9

M5 373 < 1.4× 10−9 211 < 2.7× 10−9

M13 249 < 2.0× 10−9 137 < 5.8× 10−9

M15 275 < 6.8× 10−9 155 < 1.4× 10−8

M32 306 < 4.5× 10−9 169 < 1.5× 10−8

M33 309 < 2.4× 10−9 163 < 1.3× 10−8

aEnergy at peak of the differential detection rate for the corre-

sponding spectral model with power-law index Γ.

b95% C.L. spectral energy density (E2dF/dE) upper limit at Eth.
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gamma-ray emission consistent with the point-source hypothesis was detected.

To search for the presence of gamma-ray sources in each ∼ 3◦ observation field

and to test the robustness of the point-source analysis, two-dimensional sky maps

of point-source significance as a function of position in celestial coordinates were

calculated (see Figures 5.3–5.5). In all cases the distribution of significances was

compatible with the null hypothesis.

Upper limits on the spectral energy density of each source were derived from

the limits on the integral gamma-ray rate detected with the maximum likeli-

hood analysis. Table 5.5 summarizes the energy-independent upper limits on the

spectral energy density derived assuming a power-law energy spectrum. Limits

are given at energy thresholds for each set of the analysis cuts (Eth) which are

defined to be the peaks of the differential detection rate of the corresponding

spectral model. The Soft cuts analysis achieves an energy threshold that is 100–

200 GeV lower than the Standard cuts analysis because it is optimized for the

detection of a source with Γ = 3.5. Differences in energy threshold among the

sources is primarily attributable to the differences in the average elevation of the

observations. To a lesser degree these differences are also attributable to the

configuration of the hardware such as PMT gains.

A set of differential (energy-dependent) flux limits were derived for each

data set using the correction factor method (Section 3.6) and an energy bin

size ∆ log10E = 0.25. Although this method has several deficiencies when used

to analyze a strong gamma-ray source, it is convienient to use for determining

the flux upper limits for the non-correlated energy bins. Furthermore because

the energy bin size is significantly larger than the VERITAS energy resolution

(∆ log10E ≃ 0.07), the limits derived with the regularized unfolding method do

not differ significantly from those derived with the correction factors method.
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Figure 5.3 Significance map in right ascension and declination obtained with the

Standard cuts analysis of the region around each each of the observed dSphs.

The center of each source is designated by a black cross. Thin solid lines indicate

the circular regions in the vicinity of bright stars (mV < 6) that were excluded

from background modeling. Thick black elliptical contours of constant surface

brightness correspond to the half-light radius of each dSph given in Table 4.1.
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Figure 5.4 Significance map in right ascension and declination obtained with the

Standard cuts analysis of the region around M32 and M33. The center of each

source is designated by a black cross. Thin solid lines indicate the circular regions

in the vicinity of bright stars (mV < 6) that were excluded from background

modeling. Thick black elliptical contours indicate isophotes of constant K-band

surface brightness for M32, M31, and NGC 205 (left) and M33 (right) from

Jarrett et al. (2003).
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Figure 5.5 Significance map in right ascension and declination obtained with the

Standard cuts analysis of the region around each each of the observed globular

clusters. The center of each source is designated by a black cross. Thin solid

lines indicate the circular regions in the vicinity of bright stars (mV < 6) that

were excluded from background modeling.
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Figure 5.6 95% C.L. upper limits on the gamma-ray spectral energy density as

a function of gamma-ray energy obtained with the Standard cuts analysis (blue

arrows) for each of the observed dSphs. Upper limits on the spectral energy

density from the integral analysis (see Table 5.5) are shown for the power-law

energy distribution with Γ = 2.5 (red arrow) and Γ = 3.5 (green arrow). The

slope of the line above each integral limit indicates the slope of the spectral energy

distribution for which that limit was derived.
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Figure 5.7 95% C.L. upper limits on the gamma-ray spectral energy density as

a function of gamma-ray energy obtained with the Standard cuts analysis (blue

arrows) for M32 (left) and M33 (right). Upper limits on the spectral energy

density from the integral analysis (see Table 5.5) are shown for the power-law

energy distribution with Γ = 2.5 (red arrow) and Γ = 3.5 (green arrow). The

slope of the line above each integral limit indicates the slope of the spectral energy

distribution for which that limit was derived.
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Figure 5.8 95% C.L. upper limits on the gamma-ray spectral energy density as

a function of gamma-ray energy obtained with the Standard cuts analysis (blue

arrows) for the three observed globular clusters. Upper limits on the spectral

energy density from the integral analysis (see Table 5.5) are shown for the power-

law energy distribution with Γ = 2.5 (red arrow) and Γ = 3.5 (green arrow).

The slope of the line above each integral limit indicates the slope of the spectral

energy distribution for which that limit was derived.
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Figures 5.6–5.8 show the limits on the spectral energy density as a function of

gamma-ray energy derived with Standard cuts analysis. For comparison the inte-

gral (energy-independent) limits for Standard and Soft cuts analyses are shown

at the corresponding energy thresholds. Two different models of the background,

maximum likelihood and reflected region, were used for integral and differential

analyses respectively.

5.4 Spatial DM Distribution Constraints

The distribution of DM in the dSph systems was constrained by analyzing the

distribution of stellar line-of-sight velocities and projected positions using the

orbit modeling methodology (Section 4.6.1). This analysis was used to estimate

both the expected spatial distribution of the annihilation signal (through the

determination of the scale radius rs) and its amplitude (through the evaluation

of J̃) including estimate of systematic uncertainties. Stellar velocity data sets

were taken from Muñoz et al. (2005) for Draco and Ursa Minor, Willman et al.

(2010) for Willman 1, Geha et al. (2009) for Segue 1 and Martin et al. (2007)

for Bootes I. Table 5.6 summarizes the mean velocity, velocity dispersion, and

number of stars in each data set. An effective tidal radius, rt, was chosen to be

slightly larger than the most distant star in each galaxy. The tidal radius was

used to construct a model for the orbital energy distribution given in Equation

4.22.

Table 5.7 shows the constraints on the spherically symmetric DM potential of

each dSph derived assuming an NFW potential (Equation 4.15) and a flat orbital

energy distribution truncated at the tidal radius. Constraints on J̃ are derived

for an integration aperture of radius 0.3◦. Figure 5.9 illustrates the likelihood

contours for Draco and Segue 1 in the log10 J̃ − log10M(rs) plane. The p.d.f. for
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Figure 5.9 68% (solid lines) and 90% (dashed lines) C.L. regions in the log10(J̃)-

log10(M(rs)) parameter space derived for the Draco (left) and Segue 1 (right)

stellar velocity data sets. Black (red) lines indicate the constraints derived as-

suming an NFW (Hernquist) DM potential.

J̃ is found to follow an approximately log-normal distribution. The J̃ value for

Draco and Ursa Minor is most well-defined due to the significantly larger data sets

for these galaxies (Nstar ≃ 200). The three smaller dSphs have progressively larger

values of J̃ with Segue 1 having an estimate approximately an order of magnitude

larger than that of Draco and Ursa Minor but with significantly larger uncertainty.

In general due to the small data samples of these systems, the trend of increasing

J is not statistically significant. To evaluate the robustness of the constraints on J̃

and therefore potential systematic errors, the same stellar velocity analysis was

performed for a Hernquist potential (Equation 4.14). Although the Hernquist

profile generally provides poor fits to the DM distribution of simulated halos,

this analysis demonstrates the sensitivity of J̃ to the assumed orbital energy

distribution. Table 5.8 illustrates a comparison of the constraints on J̃ computed

for the NFW and Hernquist potentials. Although the derived parameters rs, ψ0,

and M(rs) differ significantly between the two models, the value of J̃ is negligibly
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Table 5.6. Summary of the line of sight velocity data sets of the five observed

dSphs. The column rt indicates the tidal radius that was assumed for the stellar

distribution.

Name 〈vz〉 [km s−1] σz [km s−1] rt [kpc] D [kpc] Nstar Ref.

Draco -290.8 ± 0.7 10.8 ± 0.6 2.0 76 ± 5 210 1

Ursa Minor -245.2 ± 0.8 11.5 ± 0.6 2.0 66 ± 3 213 1

Bootes I 99.9 ± 2.4 9.0 ± 2.2 0.5 62 ± 3 44 2,3

Willman 1 -14.1 ± 1.0 4.0 ± 0.9 0.2 38 ± 7 45 4

Segue 1 206.4 ± 1.3 4.3 ± 1.1 0.1 23 ± 2 24 5

References. — (1) Muñoz et al. (2005); (2) Martin et al. (2007); (3) Norris

et al. (2008); (4) Willman et al. (2010) ; (5) Geha et al. (2009)

impacted by change of DM potential.

5.5 WIMP Annihilation Gamma-ray Flux Limits

Upper limits on the gamma-ray flux from WIMP annihilations were evaluated

for each source using a model for the expected spatial emission profile and spec-

trum. Limits were evaluated for the case of both the neutralino of SUSY and

the B(1) Kaluza-Klein (KK) excitation of UED. As discussed in Section 4.2, the

shape of the continuum spectrum from WIMP annihilations is relatively similar

for all final state channels with the exception of τ+τ− which produces a signif-

icantly harder spectrum. A benchmark neutralino spectrum was adopted with
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Table 5.7. Constraints on the NFW model parameters of the DM distribution

of the five observed dSphs. An integration aperture of radius 0.4◦ was used for

the calculation of line-of-sight integral J̃ .

Name log10(J̃) rs ψ0 ρs M(rs)

[kpc] [km2 s−2] [M⊙ pc−3] [106M⊙]

Draco 0.09± 0.19 1.2± 0.22 3020± 380 0.038+0.027
−0.016 164+93

−53

Ursa Minor −0.12± 0.21 3.8+0.7
−1.2 5200+700

−1200 0.0065+0.0074
−0.0026 883+68

−47

Bootes I 0.18± 0.44 0.22+0.11
−0.07 990+400

−270 0.39+0.98
−0.27 9.7+17

−0.6

Willman 1 0.37± 0.49 0.13+0.07
−0.05 590+270

−190 0.65+1.8
−0.46 3.4+6.4

−2.1

Segue 1 1.07± 0.80 0.027+0.016
−0.011 360+270

−160 9.2+43
−7.3 0.43+1.1

−0.30

Table 5.8. Comparison of constraints on the line-of-sight integral J̃ derived

assuming an NFW potential (J̃N) and a Hernquist potential (J̃H). The fourth

column shows the estimate of J̃ taken from the reference in column five.

Name log10(J̃N ) log10(J̃H) log10(J̃) Ref.

Draco 0.09± 0.19 0.06± 0.19 0.37± 0.10 1

Ursa Minor −0.12± 0.21 −0.14± 0.20 0.31± 0.14 1

Bootes I 0.18± 0.44 0.19± 0.44 −0.12± 0.50 1

Willman 1 0.37± 0.49 0.41± 0.48 0.33± 0.90a 2

Segue 1 1.07± 0.80 1.12± 0.80 0.42± 0.60 3

References. — (1) Abdo et al. (2010a); (2) Strigari et al. (2008b);

(3) Essig et al. (2010)

aErrors correspond to 90% confidence level interval.
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Figure 5.10 Left: Differential annihilation yield as a function of gamma-ray

energy for a neutralino WIMP of mass 316 GeV (solid black line), 1 TeV (solid

red line), 3.16 TeV (solid green line), and 10 TeV (solid blue line) and a KK

WIMP of mass 1 TeV (dashed purple line). Right: Logarithmic slope of the

differential annihilation yield (−d lnN/d lnE) as a function of energy of the five

WIMP models shown in the left panel.

final state branching ratios of 90% and 10% to bb̄ and τ+τ− respectively. As

shown in Figure 5.10 this spectrum exhibits strong curvature and has a peak

in spectral energy density at the energy which is approximately factor of 30

lower than the neutralino mass. The slope of the neutralino spectrum in the

gamma-ray energy band centered in the region of maximal VERITAS sensitivity

(around E ≃ 316 GeV) is therefore a strong function of the neutralino mass. For

the theoretically preferred mass range for the neutralino in the MSSM scenarios

(100 GeV – 1 TeV), the logarithmic slope of the annihilation spectrum is rela-

tively soft (Γ & 3). A benchmark KK spectrum was evaluated using the final

state branching ratios from Hooper & Profumo (2007). Due to the dominant

contribution of charged leptons, the KK WIMP spectrum is significantly harder

relative to the neutralino WIMP with Γ ≃ 2–2.5 at E ≃ 316 GeV.

160



The spatial profile of the gamma-ray emission from WIMP annihilations is

determined by the line of sight integral over the DM density profile (Section

4.1). The DM distribution in the core of the local group galaxies M32 and M33

and globular clusters M5, M13, and M15 is very weakly constrained due to the

dominant contribution of baryonic matter to the gravitational potential in these

regions. Gravitational interactions between baryons and DM in these objects

could potentially enhance the DM density on small scales (see Section 4.5 for a

discussion of these effects). The dominant fraction of the DM self-annihilation

emission in these systems is expected to arise from a very small region that would

appear point-like as compared to the instrumental PSF of VERITAS. Therefore

a point-source emission model is adopted for these five sources. For the five

dSphs, the emission profiles were calculated using the NFW halo model and the

scale radii from Table 5.7 that were inferred from the orbit modeling analysis.

Figure 5.11 shows a comparison of the spatial emission profiles of the five dSphs

calculated by convolving the line-of-sight intensity (dJ̃/dΩ) with the VERITAS

PSF. The emission profiles of Bootes I, Willman 1, and Segue 1 are nearly point-

like while Draco and Ursa Minor demonstrate significant extension.

Upper limits on the spectral energy density of both neutralino and KK WIMPs

were calculated using the Soft cuts analysis. This analysis was found to provide

improved sensitivity relative to Standard cuts for both KK and neutralino WIMPs

in the mass range around 1 TeV which is justified by the expected logarithmic

slope of annihilation spectra (Figure 5.10). Table 5.9 gives the upper limits on the

gamma-ray spectral energy density and gamma-ray integral flux from neutralino

and KK WIMPs with a mass of 1 TeV. Due to its steeper spectral slope, sensitivity

to the neutralino WIMP is a strong function of the energy threshold which can

vary by as a much as a factor of 2 (see Figure 5.12) due to the average zenith

angle of the observation and changes to the instrument configuration. Figures
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Figure 5.11 Spatial emission profile for WIMP annihilation of the five dSphs

calculated using the NFW model parameters from Table 5.7 and the benchmark

neutralino spectral model with mass 1 TeV. The line for Segue 1 is representative

of the gamma-ray PSF.
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Table 5.9. Summary of energy thresholds, upper limits on the gamma-ray

spectral energy density, and upper limits on the integral gamma-ray flux

derived for a 1 TeV neutralino and KK WIMP.

Name Neutralino KK

Eth
a E2dF/dEb Φu.l.

c Eth
a E2dF/dEb Φu.l.

c

[GeV] [erg m−2 s−1] [m−2 s−1] [GeV] [erg m−2 s−1] [m−2 s−1]

Draco 225 < 1.3× 10−8 < 9.5× 10−8 272 < 8.8× 10−9 < 4.6× 10−8

Ursa Minor 288 < 1.8× 10−8 < 1.8× 10−7 346 < 1.3× 10−8 < 7.1× 10−8

Bootes I 176 < 4.3× 10−9 < 2.3× 10−8 206 < 2.6× 10−9 < 1.3× 10−8

Willman 1 182 < 2.8× 10−8 < 1.6× 10−7 221 < 1.8× 10−8 < 9.1× 10−8

Segue 1 153 < 4.9× 10−9 < 2.2× 10−8 180 < 3.0× 10−9 < 1.5× 10−8

M5 216 < 2.8× 10−9 < 1.9× 10−8 251 < 1.8× 10−9 < 9.0× 10−9

M13 148 < 5.1× 10−9 < 2.2× 10−8 178 < 2.9× 10−9 < 1.5× 10−8

M15 162 < 1.3× 10−8 < 6.1× 10−8 190 < 7.8× 10−9 < 4.0× 10−8

M32 178 < 1.4× 10−8 < 7.3× 10−8 215 < 8.1× 10−9 < 4.1× 10−8

M33 174 < 1.1× 10−8 < 6.1× 10−8 221 < 6.6× 10−9 < 3.4× 10−8

aEnergy at the peak of the differential detection rate for the corresponding WIMP spectral

model.
b95% C.L. spectral energy density upper limit at Eth.

c95% C.L. upper limit on the integral gamma-ray flux above 100 GeV.
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Figure 5.12 Gamma-ray effective collecting area as a function of gamma-ray en-

ergy for the Soft cuts analysis of the five dSph systems (left) and the two local

group galaxies and three globular clusters (right). Differences in collecting area

are mostly due to two factors: the average zenith angle of the observations and

the change of the VERITAS layout in Summer 2009 and optimal analysis cuts.

5.13 and 5.14 show the analysis energy threshold and upper limit on the spectral

energy density as a function of WIMP mass between 100 GeV and 10 TeV for

the neutralino spectral model.

5.6 WIMP Parameter Space Constraints

Upper limits on 〈σv〉 as a function of WIMP mass, mWIMP, were calculated for

each dSph using the upper limit on the gamma-ray flux from WIMP annihilation

and the estimate of J̃ (Table 5.7). The uncertainties on the estimate of J̃ dom-

inates the uncertainty of the evaluation of the limits on 〈σv〉. Draco and Ursa

Minor have the smallest uncertainties of ∼40% while the other three dSphs have

uncertainties of a factor 2–5. Figure 5.15 shows the limits on 〈σv〉 derived from

Draco and Segue 1 data sets for the benchmark neutralino spectrum. The best
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Figure 5.13 Left: Energy threshold (Eth) as a function of WIMP mass for the

Soft cuts analysis of the five dSphs (Draco, Ursa Minor, Bootes I, Willman 1,

and Segue 1) and the benchmark neutralino spectrum with BR(bb̄) = 0.9 and

BR(τ+τ−) = 0.1. Right: 95% C.L. upper limit on the spectral energy density

from WIMP annihilations evaluated at Eth shown in the left figure as a function

of WIMP mass.
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Figure 5.14 Left: Energy threshold (Eth) as a function of WIMP mass for the Soft

cuts analysis of M32, M33, M15, M13, and M5 and the benchmark neutralino

spectrum with BR(bb̄) = 0.9 and BR(τ+τ−) = 0.1. Right: 95% C.L. upper limit

on the spectral energy density from WIMP annihilations as a function of WIMP

mass evaluated at Eth(MWIMP) shown in the left figure.
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constraints on 〈σv〉 are achieved for MWIMP ≃ 1–2 TeV of ∼ 8 × 10−23 cm3 s−1

and ∼ 2× 10−24 cm3 s−1 for Draco and Segue 1 respectively. Sensitivity declines

rapidly for WIMP masses below 300 GeV due to the steep fall-off of the VERITAS

effective area below the analysis energy threshold. A gradual change in the sensi-

tivity at larger neutralino masses occurs due to slower increase of the VERITAS

collecting area and dependence of the particle physics factor (Equation 4.1) on

the neutralino mass. Although with large uncertainties, the limits from Segue 1

are more than an order of magnitude lower than for Draco. The greater sensitiv-

ity is attributable to the larger value of J (factor of 10), lower energy threshold,

larger exposure, smaller angular extent consistent with the point-source, and the

overall improvement of the VERITAS sensitivity after the relocation of the T1

telescope due to better background rejection.

For comparison with the limits on 〈σv〉 of the neutralino, a set of MSSM

models were generated with the DarkSUSY code by performing a logarithmic

scan over the MSSM parameters defined in Gondolo et al. (2004): µ, M2, mA,

tan β, mq̃, At, and Ab. The models shown in Figure 5.15 were required to have

a relic density, Ωχh
2, within ±3 standard deviations of the DM relic density

measured with the five year WMAP data set (Komatsu et al., 2009) and satisfy

various constraints imposed by accelerator searches. High accuracy measurement

of the DM relic density limits the majority of models to a narrow band with

〈σv〉 ≃ 2−3×10−26 cm3 s−1. The limits inferred from Draco and Segue 1 are ap-

proximately 2–3 orders of magnitude above this critical for MSSM models range.

For comparison the limits on 〈σv〉 inferred from 1-year Fermi-LAT observations of

Draco (Abdo et al., 2010a) and the extragalactic gamma-ray background (Abdo

et al., 2010b) for a neutralino WIMP with a 100% branching ratio to bb are shown.

In the case of Draco the line-of-sight integral J used to derive these limits is a

factor of 2 larger than that adopted for the work presented here. For the extra-
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galactic background there is a very significant uncertainty in the J calculation

due to the non-uniform distribution of the DM and the limits shown uses the

intermediate value between the most and least optimistic scenarios differing by

at least two orders of magnitude. In general however Fermi-LAT is more sensitive

than VERITAS in the intermediate range of WIMP masses (100–700 GeV) due

to the neutralino spectrum peaking at 1–10 GeV where Fermi-LAT achieves its

best sensitivity.

Limits on 〈σv〉 for the KK WIMP are illustrated in Figure 5.16. An analytic

expression for 〈σv〉 as a function of mWIMP is taken from Servant & Tait (2003).

Unlike the case for the neutralino WIMP, the harder gamma-ray spectrum of the

KK WIMP produces more constraining limits inferred from VERITAS observa-

tions than those derived from the Fermi-LAT data. However, all limits are 1–2

orders of magnitude above favored theoretical predictions for the KK WIMP.

The contribution of DM substructures to the gamma-ray annihilation flux

could increase the line of sight integral by a boost factor of 1–100 (Section 4.4)

and consequently lower the limits on 〈σv〉. Martinez et al. (2009) conservatively

estimate a substructure boost factor of ∼ 1 by extrapolating the mass function

and mass-concentration relations to the DM substructure mass cutoff. Strigari

et al. (2007) set an upper limit on the boost factor of ∼ 100 by using an op-

timistic extrapolation of the substructure gamma-ray luminosity function. The

spatial distribution of the DM substructures is of critical importance for estimat-

ing their contribution to the DM annihilation luminosity. While the gamma-ray

flux arising from the smooth DM distribution scales as the square of the local DM

density, the luminosity from substructures scales as the substructure number den-

sity. High-resolution CDM simulations have found that the substructure number

density approximately traces the DM density (Diemand & Moore, 2009). There-
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fore the annihilation flux from DM substructures is distributed over significantly

larger spatial scales than that of smooth DM distribution. The distribution of

substructures can further be affected by tidal interaction at large scales and by

interactions with the high densities of baryonic matter on small scales. For exam-

ple, for Draco and Ursa Minor the relatively large scale radius of ∼ 1 kpc suggests

that the significant fraction of the annihilation luminosity arising from substruc-

tures is likely to be too extended relative to the VERITAS PSF to significantly

boost the detectability of WIMP annihilations. For the spatially smaller systems

such as Segue 1, the substructures which survived the tidal interaction are likely

to contribute to the point-source-like DM annihilation luminosity. However the

fraction of DM substructures surviving tidal stripping is largely uncertain. In the

case of condensed baryonic systems such as galactic nuclei or globular clusters,

the fate of DM substructures is even more uncertain because of intense interac-

tion with high density baryonic matter. These considerations suggest that the

boost factor of the systems observed is likely limited to a moderate range of 1–10.

The Sommerfeld enhancement has been extensively studied as a mechanism

for boosting the annihilation cross section above its natural value (Hisano et al.,

2004; Cirelli et al., 2007; Arkani-Hamed et al., 2009). This effect can arise due

to a long-range attractive force between WIMPs which gives a WIMP velocity

dependent correction to the annihilation cross section. The analog of this effect

in electromagnetism is exemplified by the dependence of the cross section for

a long-range screened coulomb interaction (Yukawa scattering) on the particle’s

energy in which case the cross section rapidly increases as energy decreases when

the screening parameter vanishes (Rutherford scattering). Such a force could be

mediated by the W/Z bosons (Hisano et al., 2004) or a new light force carrier

introduced in theoretical considerations (Arkani-Hamed et al., 2009) to further

enhance this effect. The Sommerfeld enhancement factors are predicted to be
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particularly large (up to 104) for very large mass neutralinos (above 1 TeV) or

particularly low mass light force carrier (much less than MZ/MW ). If neutralino

mass is in the TeV range or above the Sommerfeld effect can provide very signif-

icant improvement of constraints shown in Figure 5.15. In this sense the upper

limit derived in this work could be interpreted as a constraint on the cumula-

tive effect of DM substructure boost factor and Sommerfeld effect if illustrated

MSSM models in regime of WIMP mass larger 1 TeV are assumed valid then this

cumulative factor is constrained to be below 104.
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Figure 5.15 95% C.L. Upper limits on 〈σv〉 of the neutralino WIMP as a function

of MWIMP as inferred from observations of Draco (blue solid curve) and Segue 1

(red solid curve) for the benchmark neutralino spectral model. Shaded regions

indicate the 1σ theoretical uncertainty on the upper limit associated with the

calculation of J . Shown as black circles are MSSM models generated with Dark-

SUSY that fall within ±3 standard deviations of the relic density measured in the

five year WMAP data set (Komatsu et al., 2009). The green dashed line indicates

the upper limits on 〈σv〉 inferred from Fermi-LAT observations of Draco (Abdo

et al., 2010a). The purple dashed line indicates the upper limits on 〈σv〉 inferred

from the Fermi-LAT measurement of the high latitude (l ≥ 10◦) extragalactic

gamma-ray background (Abdo et al., 2010b).
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Figure 5.16 Upper limits on 〈σv〉 of the KK WIMP as a function of MWIMP as

inferred from observations of Draco (blue solid curve) and Segue 1 (red solid

curve) for the benchmark KK spectral model. Shaded regions indicate the 1σ

theoretical uncertainty on the upper limit associated with the calculation of J .

Shown as a solid black line is the preferred region for the B(1) LKP of UED. The

green dashed line indicates the upper limits on 〈σv〉 inferred from Fermi-LAT

observations of Draco (Abdo et al., 2010a).
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CHAPTER 6

Conclusions

This thesis reports the constraints on VHE gamma-ray emission from ten targets

that were observed to search for the signature of WIMP annihilations. Analysis of

these data with a standard point-source analysis (Section 5.3) found no significant

emission and set limits on the spectral energy density of gamma-ray radiation

from these objects at the level ∼ 5 × 10−9 erg m−2 s−1 at 1 TeV (∼ 1% of the

spectral energy density of the Crab Nebula). All fields were further studied with

a two-dimensional analysis technique. No significant gamma-ray excesses were

detected within any of the ∼ 3◦ observation fields.

Five of the ten observed systems have a mass distribution dominated by

baryons at small scales — the two local group galaxies (M32 and M33) and

three globular clusters (M5, M13, and M15). Although large uncertainty exists

in the DM content of these systems, the compression of DM through the infall of

baryons into the cores of these objects suggest the possibility of very high lumi-

nosity enhancement factors up to 106 (Wood et al., 2008). From the point of view

of the detection of DM self-annihilation flux, observations of these systems are of

significant interest. However, non-detection of the WIMP annihilation signature

reported in this work can be interpreted only as a joint constraint on both the par-

ticle and astrophysical properties of DM. For this reason the observational upper

limits for the DM self-annihilation provided by these baryon-dominated systems

can not be uniquely interpreted and used to establish reliable constraints on the
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WIMP parameters.

A stellar orbit modeling analysis technique was developed to infer the distribu-

tion of DM in dSph galaxies from the distribution of stellar line-of-sight velocities

and positions (Section 4.6). This method differs from conventional analyses using

the spherical Jeans Equation (see for example Strigari et al. (2007)) in that it

considers the p.d.f. of the observables of individual stars and makes assumptions

about their distribution in energy and angular momentum space. A similar ap-

proach that utilizes the same basic methodology was previously described in the

context of dSphs in Wilkinson et al. (2002) and applied to the Draco dSph in

Kleyna et al. (2002). The orbit modeling analysis was used to constrain the value

of the line-of-sight integral, J , over the DM distribution in each system given a

parametric model for the DM potential motivated by CDM simulations. The best

constraints on J were obtained for the two dSphs with the largest stellar velocity

data sets, Draco and Ursa Minor, resulting in statistical uncertainties of ∼ 50%.

These estimates of J were a factor of ∼ 2 lower than those reported in Abdo

et al. (2010b) but consistent within the statistical uncertainties. Estimates of J

were significantly less statistically constrained for the three fainter dSph systems

due to the smaller sizes of the stellar velocity samples. Segue 1 was found to

have the largest J value (J̃ ≃ 10) of the five dSphs studied but with a statistical

uncertainty of nearly an order of magnitude. These constraints could be signifi-

cantly improved by increasing the sample of stars with known stellar velocity and

position data. The ongoing efforts in this direction (Simon et al., 2010) promise

to improve these estimates and could potentially affect the limits reported in this

thesis.

Constraints on the present-day thermally averaged product of the cross sec-

tion and relative velocities of the WIMPs, 〈σv〉, as a function of WIMP mass were

173



derived for neutralino and KK WIMP models based on the observations of the five

dSphs in which the spatial distribution of DM is constrained to varying degrees by

the stellar kinematics data. The highest sensitivity to WIMP self-annihilations is

achieved for WIMP models with masses near 1 TeV. Robust upper limits on 〈σv〉
of ∼ 10−22 cm3 s−1 were derived from observations of Draco and Ursa Minor.

Observations of Segue 1 resulted in much lower limits of 10−23–10−24 cm3 s−1 but

are subject to a significantly larger uncertainty in the line-of-sight integral (J

values). The constraints on 〈σv〉 reported in this thesis are approximately 2–3

orders of magnitude above the predictions of conventional MSSM and KK mod-

els assuming no boost factor from substructure and no additional particle-related

gamma-ray flux enhancement factors due to the Sommerfeld effect and virtual

internal bremsstrahlung (Section 4.2). Should the latter effects be included, the

constraints on 〈σv〉 in the most optimistic regime could be pushed down by a fac-

tor as large as 105. If the validity of MSSM models is assumed then the reported

observations limit the cumulative role of these effects. Extreme enhancement

factors of 103–104 which are the upper limit for enhancement by the Sommerfeld

effect with light force carriers (Arkani-Hamed et al., 2009) are therefore already

ruled out by these observations. For conventional interaction between neutralinos

by exchange of weak bosons, the Sommerfeld effect may be particularly large for

high mass neutralinos (above 1 TeV). The data reported in this thesis suggest an

upper limit in this MWIMP regime of ∼ 104.

Although gamma-ray searches for the WIMP have yet to exclude theoretically

favored regions of the WIMP parameter space, these searches remain of critical

importance to unraveling the nature of DM and are highly complementary to

accelerator searches and direct DM detection experiments. Unlike the signa-

ture of WIMP-nucleon scattering, the cross section of WIMP self-annihilation is

naturally constrained to a relatively narrow band defined by the bounds on the
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relic DM density measured by WMAP. Gamma-ray instruments with sufficient

sensitivity to reach this band can thus rule out a majority of WIMP models.

VHE gamma-ray searches are also uniquely sensitive to heavy WIMPs with mass

greater than 1 TeV which would be especially challenging to detect in an accel-

erator or direct detection experiment. Finally, the identification of the WIMP

gamma-ray signature is the only way to conclusively link the particle and astro-

physical properties of DM.

To begin confronting the predictions of generic MSSM models through ob-

servation of presently known dSphs, future ground-based observatories such as

CTA/AGIS (Buckley et al., 2008; CTA Consortium, 2010) will need collecting

areas at least an order of magnitude larger than the present-day instruments.

Observation of the DM self-annihilation signal will also benefit from the extension

of the energy range to a sub-100 GeV domain where the DM self-annihilation flux

is rapidly increasing. The importance of a low energy threshold was effectively

demonstrated by the WIMP constraints derived from observations conducted

with the Fermi-LAT (Abdo et al., 2010a,b). In the neutralino mass regime of

less than a few hundred GeV, the Fermi-LAT provides the best upper limits on

〈σv〉 in spite of the small collecting area of this instrument relative to ground-

based instruments. Combining these two strategies (increasing collecting area

and decreasing energy threshold) with dedicated deep observations of dSph sys-

tems (200–500 hours), may allow a future ground-based instrument to rule out

the majority of conventional MSSM models. The list of dSphs favorable for ob-

servations of DM self-annihilation has grown over the last years by a factor of

roughly two, and it is anticipated that newly discovered dSphs may offer larger J

values. Perhaps more importantly the rapidly growing kinematic data for dSphs

will provide increasingly robust constraints on the DM distribution in these sys-

tems thereby reducing uncertainty on the allowable parameter space of the WIMP
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particle physics characteristics.
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132, 2685
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